【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,若ACBC,則a的值為_______

【答案】

【解析】

根據(jù)c=2求得C點(diǎn)坐標(biāo)為(0,2),則OC=2,設(shè)Ax10),Bx2,0),ACBC,利用,求得OC2=OAOB,即4=|x1x2|=-x1x2;然后根據(jù)根與系數(shù)的關(guān)系列出方程,即可求得a的值.

解:設(shè)Ax1,0)(x10),Bx2,0)(x20),
∵當(dāng)x=0時(shí),y=2

C02),∴OC=2

ACBC,∴∠ACB90°

∴∠ACO+BCO90°

∵∠ACO+CAO90°
∴∠BCO=∠CAO

∵∠AOC=COB90°

OC2=OAOB,即4=|x1x2|=-x1x2,
根據(jù)韋達(dá)定理知x1x2=,
a=-
故答案為:-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(diǎn)(不含B、C兩點(diǎn)),將△ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將△CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的有 (寫出所有正確結(jié)論的序號)

①△CMP∽△BPA;

②四邊形AMCB的面積最大值為10;

③當(dāng)P為BC中點(diǎn)時(shí),AE為線段NP的中垂線;

④線段AM的最小值為;

⑤當(dāng)△ABP≌△ADN時(shí),BP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年2月16日,由著名導(dǎo)演林超賢的電影《紅海行動》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個(gè)不透明的袋子中裝有編號1~4的四個(gè)球(除編號外都相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中摸出一個(gè)球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

(1)請用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結(jié)果;

(2)分別求出小亮和小麗獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某跳水隊(duì)為了解運(yùn)動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖和圖.請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受調(diào)查的跳水運(yùn)動員人數(shù)為 ,圖的值為

(2)求統(tǒng)計(jì)的這組跳水運(yùn)動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 x1x2是一元二次方程4kx24kx+k+10的兩個(gè)實(shí)數(shù)根.

(1)k的取值范圍.

(2)是否存在實(shí)數(shù)k,使(2x1x2)(x12x2)=﹣成立?若存在求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長沙市馬王堆蔬菜批發(fā)市場某批發(fā)商原計(jì)劃以每千克10元的單價(jià)對外批發(fā)銷售某種蔬菜為了加快銷售,該批發(fā)商對價(jià)格進(jìn)行兩次下調(diào)后,售價(jià)降為每千克元.

求平均每次下調(diào)的百分率;

某大型超市準(zhǔn)備到該批發(fā)商處購買2噸該蔬菜,因數(shù)量較多,該批發(fā)商決定再給予兩種優(yōu)惠方案以供選擇方案一:打八折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金1000試問超市采購員選擇哪種方案更優(yōu)惠?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,取格點(diǎn)A、BC并連接AB,BC.取格點(diǎn)DE并連接,交AB于點(diǎn)F

(Ⅰ)BF的長等于_____

(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CG=FG,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡要說明點(diǎn)G的位置是如何找到的________________________________________(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù),,是常數(shù),)圖象的一部分,與軸的交點(diǎn)在點(diǎn)之間,對稱軸是.有下列說法:①;②;③;④為實(shí)數(shù));⑤當(dāng)時(shí),.其中正確的是______(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形四邊形ABCD中,,對角線AC、BD交于點(diǎn)O,點(diǎn)P為直線BD上的動點(diǎn)不與點(diǎn)B重合,連接AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到線段PE,連接CE、BE.

問題發(fā)現(xiàn)

如圖1,當(dāng)點(diǎn)E在直線BD上時(shí),線段BP與CE的數(shù)量關(guān)系為______;______

拓展探究

如圖2,當(dāng)點(diǎn)P在線段BO延長線上時(shí),的結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;

問題解決

當(dāng)時(shí),請直接寫出線段AP的長度.

查看答案和解析>>

同步練習(xí)冊答案