【題目】一次函數(shù)y=3x+6中,y的值隨x的增大而

【答案】增大
【解析】解:∵一次函數(shù)y=3x+6中,k>0,
∴變量y的值隨x的值增大而增大,
所以答案是:增大
【考點精析】關(guān)于本題考查的一次函數(shù)的性質(zhì),需要了解一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點O、B、C、A、P在同一平面內(nèi).

求:

(1)P到OC的距離.

(2)山坡的坡度tanα.

(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某采摘農(nóng)場計劃種植A,B兩種草莓共6畝,根據(jù)表格信息,解答下列問題:

項目 品種

A

B

年畝產(chǎn)(單位:千克)

1200

2000

采摘價格

(單位:元/千克)

60

40

(1)若該農(nóng)場每年草莓全部被采摘的總收入為460000元,那么A、B兩種草莓各種多少畝?

(2)若要求種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?并求出最多總收入.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列各組線段長為邊,能組成三角形的是( )

A. 1cm,2cm,3cm B. 2cm,3cm,8cm C. 5cm,12cm,6cm D. 4cm,6cm,9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,ABC的頂點A、B、C在小正方形的頂點上,將ABC向下平移4個單位、再向右平移3個單位得到A1B1C1,然后將A1B1C1繞點A1順時針旋轉(zhuǎn)90°得到A1B2C2

(1)在網(wǎng)格中畫出A1B1C1A1B2C2;

(2)計算線段AC從開始變換到A1 C2的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】收集數(shù)據(jù)的方法有 (至少填三種).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是( )

A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC≌△DEF,∠A=70°,∠E=30°,則∠F的度數(shù)為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯子AB斜靠在一豎直的墻上,梯子的底端A到墻根O的距離AO為2米,梯子的頂端B到地面的距離BO為6米,現(xiàn)將梯子的底端A向外移動到A′,使梯子的底端A′到墻根O的距離A′O等于3米,同時梯子的頂端B下降至B′.求梯子頂端下滑的距離BB′.

查看答案和解析>>

同步練習(xí)冊答案