在△ABC中,AB=AC,CG⊥BA交BA的延長線于點(diǎn)G.一等腰直角三角尺按如圖-1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過點(diǎn)B.
⑴ 在圖-1中請你通過觀察、測量BF與CG的長度,猜想并寫出BF與CG滿足的數(shù)量關(guān)系,然后證明你的猜想;
⑵ 當(dāng)三角尺沿AC方向平移到圖-2所示的位置時(shí),一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過點(diǎn)D作DE⊥BA于點(diǎn)E.此時(shí)請你通過觀察、測量DE、DF與CG的長度,猜想并寫出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;
⑶ 當(dāng)三角尺在⑵的基礎(chǔ)上沿AC方向繼續(xù)平移到圖-3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時(shí),⑵中的猜想是否仍然成立?(不用說明理由)
(1)BF=CG;
證明:在△ABF和△ACG中,
∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,
∴△ABF≌△ACG(AAS),
∴BF=CG.
(2)DE+DF=CG;
證明:過點(diǎn)D作DH⊥CG于點(diǎn)H(如圖).
∵DE⊥BA于點(diǎn)E,∠G=90°,DH⊥CG,
∴四邊形EDHG為矩形,∴DE=HG,DH∥BG.∴∠GBC=∠HDC.
∵AB=AC,∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS),∴DF=CH.
∴GH+CH=DE+DF=CG,即DE+DF=CG.
(3)仍然成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com