【題目】如圖,在中,的平分錢,垂足是,的延長線交于點

)請找出與相等的所有的角,并證明其中一個.

)求證:

【答案】理由見解析;(2)證明見解析.

【解析】試題分析:(1)與∠F相等的所有角為∠ADB、EDC、BCF,選擇證明∠F=BCF,由已知條件不難證明△FBE≌△CBE,即可證明∠F=BCF;(2)先計算出∠ABC和∠ACB的度數(shù),繼而求出∠ABD的度數(shù),再由等腰三角形中,已知頂角∠ABC的度數(shù),求出底角∠FCB的度數(shù),接著求出∠ACF的度數(shù),得出∠ABD=FCA,再由AB=AC以及∠BAD=FAC可得△BAD≌△CAF,所以BD=CF,又因為CE=EF,得證.

試題解析:

F=ADB=EDC=BCF,

證明∠F=BCF,

BD平分∠ABC,

∴∠FBE=CBE,

CEBD于點E,

∴∠FEB=CEB=90°,

再△FBE和△CBE中,

,

∴△FBE≌△CBE(ASA),

∴∠F=BCF;

∵在RtABC中,∠BAC=90°,AB=AC,

∴∠ABC=ACB=45°,

BE平分∠ABC

∴∠ABD=ABC=22.5°,

由(1)可知,∠F=FCB=×(180°-ABC)=67.5°,

∴∠FCA=FCBACB=67.5°-45°=22.5°,

∴∠ABD=FCA,

在△BAD和△CAF中,

∴△BAD≌△CAF(ASA),

BD=CF,

CE=EF,

BD=2EC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:3x-2(x+3)=6-2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC⊥AB,OAC的中點,經(jīng)過點O的直線交ADE,交BCF,連結(jié)AF、CE,現(xiàn)在添加一個適當(dāng)?shù)臈l件,使四邊形AFCE是菱形,下列條件:①OE=OA;②EF⊥AC;③AF平分∠BAC;④EAD中點.正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是,每個小括的頂點叫做格點.

)如圖,點,,是小正方形的頂點,直接寫出的度數(shù).

)在圖中以格點為頂點畫一個面積為的正方形.

)在圖中以格點為頂點畫一個三角形,使三角形三邊長分別為,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】的平分線上一點,,,、是垂足,連接于點

)若,求證:是等邊三角形.

)若,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:給定關(guān)于x的函數(shù)y,對于該函數(shù)圖象上任意兩點x1,y1),(x2,y2),

當(dāng)x1﹤x2,都有y1﹤y2,稱該函數(shù)為增函數(shù)根據(jù)以上定義可以判斷下面所給的函數(shù)中,是增函數(shù)的有______________填上所有正確答案的序號

y = 2x; y =x+1; y = x2x>0;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種運算(a*b)=2a×(a+b),則4*5=。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線l1:y=2x+b與直線l2:y=mx+4相交于點P(1,3),利用圖像:

(1)解關(guān)于x,y的二元一次方程組:

(2)解關(guān)于x的一元一次不等式:2x+b>mx+4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC三個頂點的坐標(biāo)分別為A1,1)、B42)、C34).

1)畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

2)畫出ABC沿x軸向左平移4個單位得到A2B2C2;

3)在x軸上求作一點P,使PAB的周長最小,并直接寫出點P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案