【題目】如圖,拋物線與軸交于、兩點,與軸交于點.
(1)求點、、的坐標;
(2)若點在軸的上方,以、、為頂點的三角形與全等,平移這條拋物線,使平移后的拋物線經過點與點,請你寫出平移過程,并說明理由。
【答案】(1),,;(2),.理由見解析.
【解析】
(1)令中y=0,求出點A、B的坐標,令x=0即可求出點C的坐標;
(2)分兩種全等情況求出點D的坐標,再設平移后的解析式,將點B、D的坐標代入即可求出解析式,由平移前的解析式根據(jù)頂點式的數(shù)值變化得到平移的方向與距離.
(1)令中y=0,得,
解得: ,
∴,.
當中x=0時,y=-3,
∴.
(2)當△ABD1≌△ABC時,
∵,
∴由軸對稱得D1(0,3),
設平移后的函數(shù)解析式為,將點B、D1的坐標代入,得
,解得,
∴平移后的解析式為,
∵平移前的解析式為,
∴將向右平移3個單位,再向上3個單位得到;
當△ABD2≌△BAC時,即△ABD2≌△BAD1,
作D2H⊥AB,
∴AH=OB=1,D2H=OD1=3,
∴OH=OA-AH=3-1=2,
∴D2(-2,3),
設平移后的解析式為,將點B、D2的坐標代入得
,解得,
∴平移后的函數(shù)解析式為,
∵平移前的解析式為,
∴將向右平移1個單位,再向上平移3個單位得到.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3經過點 B(﹣1,0),C(2,3),拋物線與y軸的焦點A,與x軸的另一個焦點為D,點M為線段AD上的一動點,設點M的橫坐標為t.
(1)求拋物線的表達式;
(2)過點M作y軸的平行線,交拋物線于點P,設線段PM的長為1,當t為何值時,1的長最大,并求最大值;(先根據(jù)題目畫圖,再計算)
(3)在(2)的條件下,當t為何值時,△PAD的面積最大?并求最大值;
(4)在(2)的條件下,是否存在點P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:若在一個兩位正整數(shù)N的個位數(shù)字與十位數(shù)字之間添上數(shù)字6,組成一個新的三位數(shù),我們稱這個三位數(shù)為N的“至善數(shù)”,如34的“至善數(shù)為364”;若將一個兩位正整數(shù)M加6后得到一個新數(shù),我們稱這個新數(shù)為M的“明德數(shù)”,如34的“明德數(shù)為40”.
(1)30的“至善數(shù)”是 ,“明德數(shù)”是 .
(2)求證:對任意一個兩位正整數(shù)A,其“至善數(shù)”與“明德數(shù)”之差能被9整除;
(3)若一個兩位正整數(shù)B的明德數(shù)的各位數(shù)字之和是B的至善數(shù)各位數(shù)字之和的一半,求B的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李師傅駕駛出租車勻速地從西安市送客到咸陽國際機場,全程約,設小汽車的行駛時間為 (單位:),行駛速度為(單位:),且全程速度限定為不超過.
(1)求關于的函數(shù)表達式;
(2)李師傅上午點駕駛小汽車從西安市出發(fā).需在分鐘后將乘客送達咸陽國際機場,求小汽車行駛速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知:如圖,拋物線與坐標軸分別交于點, 點是線段上方拋物線上的一個動點,
(1)求拋物線解析式:
(2)當點運動到什么位置時,的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經過AB的中點D.若⊙O的半徑為,AB=4,則BC的長是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B是函數(shù)圖象上關于原點對稱的兩點,且BC//x軸,AC//y軸,△ABC的面積記為S,則( )
A.S=2B.S=4C.S=8D.S=1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com