【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)一個(gè)水瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的水瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打八折;乙商場(chǎng)規(guī)定:買一個(gè)水瓶贈(zèng)送兩個(gè)水杯,另外購(gòu)買的水杯按原價(jià)賣.若某單位想要買5個(gè)水瓶和20個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.(必須在同一家購(gòu)買)
【答案】(1)一個(gè)水瓶40元,一個(gè)水杯是8元;(2)選擇乙商場(chǎng)購(gòu)買更合算.
【解析】
(1)設(shè)一個(gè)水瓶x元,表示出一個(gè)水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;
(2)計(jì)算出兩商場(chǎng)得費(fèi)用,比較即可得到結(jié)果.
(1)設(shè)一個(gè)水瓶x元,表示出一個(gè)水杯為(48﹣x)元,
根據(jù)題意得:3x+4(48﹣x)=152,
解得:x=40,
則一個(gè)水瓶40元,一個(gè)水杯是8元;
(2)甲商場(chǎng)所需費(fèi)用為(40×5+8×20)×80%=288(元);
乙商場(chǎng)所需費(fèi)用為5×40+(20﹣5×2)×8=280(元),
∵288>280,
∴選擇乙商場(chǎng)購(gòu)買更合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘?cái)?shù)”.
(1)試分析28是否為“神秘?cái)?shù)”;
(2)下面是兩個(gè)同學(xué)演算后的發(fā)現(xiàn),請(qǐng)選擇一個(gè)“發(fā)現(xiàn)”,判斷真、假,并說(shuō)明理由.
①小能發(fā)現(xiàn):兩個(gè)連續(xù)偶數(shù)2k+2和2k(其中k取非負(fù)整數(shù))構(gòu)造的“神秘?cái)?shù)”也是4的倍數(shù).
②小仁發(fā)現(xiàn):2016是“神秘?cái)?shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) P 是∠AOB 內(nèi)部一定點(diǎn)
(1)若∠AOB=50°,作點(diǎn) P 關(guān)于 OA 的對(duì)稱點(diǎn) P1,作點(diǎn) P 關(guān)于 OB 的對(duì)稱點(diǎn) P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點(diǎn) C、D 分別在射線 OA、OB 上移動(dòng),當(dāng)△PCD 的周長(zhǎng)最小時(shí),則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:某“綜合與實(shí)踐”小組開展了“正方體紙盒的制作”實(shí)踐活動(dòng),他們利用長(zhǎng)為,寬為長(zhǎng)方形紙板制作出兩種不同方案的正方體盒子, 請(qǐng)你動(dòng)手操作驗(yàn)證并完成任務(wù).(紙板厚度及接縫處忽略不計(jì))
動(dòng)手操作一:
如圖1,若,按如圖1所示的方式先在紙板四角剪去四個(gè)同樣大小邊長(zhǎng)為的小正方形,再沿虛線折合起來(lái)就可以做成一個(gè)無(wú)蓋的正方體紙盒.
問(wèn)題解決:(1)此時(shí),你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 .
動(dòng)手操作二:
如圖2,若,現(xiàn)在在紙板的四角剪去兩個(gè)小正方形和兩個(gè)小長(zhǎng)方形恰好可以制作成一個(gè)有蓋的正方體紙盒,其大小與(1)中無(wú)蓋正方體大小一樣.
拓展延伸:(2)請(qǐng)你在圖2中畫出你剪去的兩個(gè)小正方形和兩個(gè)小長(zhǎng)方形(用陰影表示),折痕用虛線表示;
(3)此時(shí),你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 ;若,求有蓋正方體紙盒的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(5,0),B(0,5).
(1)如圖 1,P 是 AB 上一點(diǎn)且,求 P 點(diǎn)坐標(biāo);
(2)如圖 2,D 為 OA 上一點(diǎn),AC∥OB 且∠CBO=∠DCB,求∠CBD 的度數(shù);
(3)如圖 3,E 為 OA 上一點(diǎn),OF⊥BE 于 F,若∠BEO=45°+∠EOF,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是某初一數(shù)學(xué)興趣小組探究三角形內(nèi)角和的過(guò)程,請(qǐng)根據(jù)他們的探究過(guò)程,結(jié)合所學(xué)知識(shí),解答下列問(wèn)題.興趣小組將圖1△ABC三個(gè)內(nèi)角剪拼成圖2,由此得△ABC三個(gè)內(nèi)角的和為180度.
(1)請(qǐng)利用圖3證明上述結(jié)論.
(2)三角形的一條邊與另一條邊的反向延長(zhǎng)線組成的角,叫做三角形的外角.
如圖4,點(diǎn)D為BC延長(zhǎng)線上一點(diǎn),則∠ACD為△ABC的一個(gè)外角.
①請(qǐng)?zhí)骄砍?/span>∠ACD與∠A、∠B的關(guān)系,并直接填空:∠ACD=______.
②如圖5是一個(gè)五角星,請(qǐng)利用上述結(jié)論求∠A+∠B+∠C+∠D+∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點(diǎn)E,則AE的長(zhǎng)為
A. B. 2 C. D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com