精英家教網 > 初中數學 > 題目詳情
如圖,經過點A(0,-4)的拋物線y=x2+bx+c與x軸相交于B(-2,0),C兩點,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內,求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

【答案】分析:(1)該拋物線的解析式中只有兩個待定系數,只需將A、B兩點坐標代入即可得解.
(2)首先根據平移條件表示出移動后的函數解析式,進而用m表示出該函數的頂點坐標,將其代入直線AB、AC的解析式中,即可確定P在△ABC內時m的取值范圍.
(3)先在OA上取點N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,顯然在y軸的正負半軸上都有一個符合條件的M點;以y軸正半軸上的點M為例,先證△ABN、△AMB相似,然后通過相關比例線段求出AM的長.
解答:解:(1)將A(0,-4)、B(-2,0)代入拋物線y=x2+bx+c中,得:
,
解得:
故拋物線的解析式:y=x2-x-4.

(2)由題意,新拋物線的解析式可表示為:y=(x+m)2-(x+m)-4+,即:y=x2+(m-1)x+m2-m-
它的頂點坐標P:(1-m,-1);
由(1)的拋物線解析式可得:C(4,0);
那么直線AB:y=-2x-4;直線AC:y=x-4;
當點P在直線AB上時,-2(1-m)-4=-1,解得:m=;
當點P在直線AC上時,(1-m)-4=-1,解得:m=-2;
∴當點P在△ABC內時,-2<m<;
又∵m>0,
∴符合條件的m的取值范圍:0<m<

(3)由A(0,-4)、C(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;
如圖,在OA上取ON=OB=2,則∠ONB=∠ACB=45°;
∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠NBA=∠OMB;
如圖,在△ABN、△AM1B中,
∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=AN•AM1
易得:AB2=(-2)2+42=20,AN=OA-ON=4-2=2;
∴AM1=20÷2=10;
而∠BM1A=∠BM2A=∠ABN,
∴OM1=OM2=6,AM2=OM2-OA=6-4=2.
綜上,AM的長為10或2.
點評:考查了二次函數綜合題,該函數綜合題的難度較大,(3)題注意分類討論,通過構建相似三角形是打開思路的關鍵所在.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

17、按要求畫圖:
(1)如圖,要從小河引水到村莊A,請設計并作出一條最佳路線;

(2)如圖,經過點D作DE⊥AB于E,作DF∥CB交AB于點F.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•南通)如圖,經過點A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點,O為坐標原點.
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內,求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•遼陽)如圖,⊙O經過點B、D、E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)試說明直線AC是⊙O的切線;
(2)當AE=4,AD=2時,求⊙O的半徑及BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南通)如圖,經過點B(-2,0)的直線y=kx+b與直線y=4x+2相交于點A(-1,-2),則不等式4x+2<kx+b<0的解集為
-2<x<-1
-2<x<-1

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•北碚區(qū)模擬)如圖,經過點A(-2,0)的一次函數y=ax+b(a≠0)與反比例函數y=
k
x
(k≠0)的圖象相交于P、Q兩點,過點P作PB⊥x軸于點B.已知tan∠PAB=
3
2
,點B的坐標為(4,0).
(1)求反比例函數和一次函數的解析式;
(2)設一次函數與y軸相交于點C,求四邊形OBPC的面積.

查看答案和解析>>

同步練習冊答案