【題目】為測量某特種車輛的性能,研究制定了行駛指數(shù)P,P=K+1000,而K的大小與平均速度v(km/h)和行駛路程s(km)有關(guān)(不考慮其他因素),K由兩部分的和組成,一部分與v2成正比,另一部分與sv成正比.在實驗中得到了表格中的數(shù)據(jù):

速度v

40

60

路程s

40

70

指數(shù)P

1000

1600


(1)用含v和s的式子表示P;
(2)當(dāng)行駛指數(shù)為500,而行駛路程為40時,求平均速度的值;
(3)當(dāng)行駛路程為180時,若行駛指數(shù)值最大,求平均速度的值.

【答案】
(1)解:設(shè)K=mv2+nsv,則P=mv2+nsv+1000,

由題意得: ,

整理得:

解得: ,

則P=﹣v2+sv+1000;


(2)解:根據(jù)題意得﹣v2+40v+1000=500,

整理得:v2﹣40v﹣500=0,

解得:v=﹣10(舍)或v=50,

答:平均速度為50km/h;


(3)解:當(dāng)s=180時,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,

∴當(dāng)v=90時,P最大=9100,

答:若行駛指數(shù)值最大,平均速度的值為90km/h.


【解析】(1)設(shè)K=mv2+nsv,則P=mv2+nsv+1000,待定系數(shù)法求解可得;(2)將P=500代入(1)中解析式,解方程可得;(3)將s=180代入解析式后,配方成頂點式可得最值情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)計算:( 0+ ﹣|﹣3|+tan45°;
(2)計算:(x+2)2﹣2(x﹣1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將五個邊長都為2cm的正方形按如圖所示擺放,點A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為(
A.2cm2
B.4cm2
C.6cm2
D.8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B,E在反比例函數(shù)y= 的圖像上,OA=1,OC=6,試求出正方形ADEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個動點,過點P作EF∥BD,與平行四邊形的兩條邊分別交于點E、F.設(shè)CP=x,EF=y,則下列圖像中,能表示y與x的函數(shù)關(guān)系的圖像大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在北海市創(chuàng)建全國文明城活動中,需要20名志愿者擔(dān)任“講文明樹新風(fēng)”公益廣告宣傳工作,其中男生8人,女生12人.
(1)若從這20人中隨機選取一人作為“展板掛圖”講解員,求選到女生的概率;
(2)若“廣告策劃”只在甲、乙兩人中選一人,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲擔(dān)任,否則乙擔(dān)任.試問這個游戲公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在左邊托盤A(固定)中放置一個重物,在右邊托盤B(可左右移動)中放置一定質(zhì)量的砝碼,可使得儀器左右平衡,改變托盤B與支撐點M的距離,記錄相應(yīng)的托盤B中的砝碼質(zhì)量,得到下表:

托盤B與點O的距離x(cm)

10

15

20

25

30

托盤B中的砝碼質(zhì)量y(g)

30

20

15

12

10


(1)把上表中(x,y)的各組對應(yīng)值作為點的坐標(biāo),在如圖所示的平面直角坐標(biāo)系中描出其余的點,并用一條光滑曲線連接起來;觀察所畫的圖像,猜測y與x之間的函數(shù)關(guān)系,求出該函數(shù)解析式;
(2)當(dāng)托盤B向左移動(不超過點M)時,應(yīng)往托盤B中添加砝碼還是減少砝碼?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A為圓心,AD為半徑的圓與BC邊相切于點M,與AB交于點E,將扇形A﹣DME剪下圍成一個圓錐,則圓錐的高為(
A.1
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延長線于F,且CF=1,則CE的長為

查看答案和解析>>

同步練習(xí)冊答案