【題目】已知射線是的角平分線,,點是射線上的點,連接.
(1)如圖1,當(dāng)點在射線上時,連接,.若,則的形狀是_____.
(2)如圖2,當(dāng)點在射線的反向延長線上時,連接,.若,則(1)中的結(jié)論是否成立?請說明理由.
【答案】(1)等邊三角形;(2)成立,理由見解析.
【解析】
(1)利用四邊形的內(nèi)角和即可得出∠BCD的度數(shù),再利用角平分線的性質(zhì)定理即可得出CB,即可得出結(jié)論;
(2)作CE⊥AM于E,作CF⊥AN于F,根據(jù)角平分線的性質(zhì)得到 CE=CF,
再根據(jù)∠ABC=∠ADC,證明△BCF≌△DCE,得到BC=CD即可證明.
(1)∵射線AC是∠MAN的角平分線,∠NAC=60°,
∴∠MAN=120°,
∵∠ABC=∠ADC=90°,
根據(jù)四邊形的內(nèi)角和得,∠BCD=360°(∠ABC+∠ADC+∠MAN)=60°,
∵AC是∠MAN的平分線,CD⊥AM.CB⊥AN,
∴CD=CB(角平分線的性質(zhì)定理),
∴△BCD是等邊三角形;
(2)成立,如圖所示,作CE⊥AM于E,作CF⊥AN于F,
∵AC是∠NAM的角平分線,CE⊥AM,CF⊥AN,
∴CE=CF,
∵∠ABC=∠ADC,
∴△BCF≌△DCE,
∴BC=CD,
∵∠BCD=∠BAD=60°,
∴△BCD是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時到達甲地,游玩一段時間后按原速前往乙地,小麗離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時,恰好經(jīng)過甲地,如圖是她們距乙地的路程y(km)與小麗離家時間x(h)的函數(shù)圖象.
(1)小麗騎車的速度為 km/h,H點坐標(biāo)為 ;
(2)求小麗游玩一段時間后前往乙地的過程中y與x的函數(shù)關(guān)系;
(3)小麗從家出發(fā)多少小時后被媽媽追上?此時距家的路程多遠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P,Q是直線y=x+2上的兩點,點P在點Q的左側(cè),且滿足OP=OQ,OP⊥OQ,則點Q的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=-x+4與x軸,y軸分別交于A,B兩點,點P(m,5)為直線l上一點.動點C從原點O出發(fā),以每秒1個單位長度的速度沿y軸正方向運動.設(shè)點C的運動時間為t秒.
(1)①m= ;
②當(dāng)t= 時,△PBC的面積是1.
(2)請寫出點C在運動過程中,△PBC的面積S與t之間的函數(shù)關(guān)系式;
(3)點D、E分別是直線AB、x軸上的動點,當(dāng)點C運動到線段QB的中點時(如右圖),△CDE周長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點E為△ABC內(nèi)切圓的圓心,連接AE的延長線交BC于點F,交⊙O于點D;連接BD,過點D作直線DM,使∠BDM=∠DAC.
(1)求證:直線DM是⊙O的切線;
(2)若DF=2,且AF=4,求BD和DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)請問EG與CG存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將圖①中△BEF繞B點逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)將圖①中△BEF繞B點旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?(請直接寫出結(jié)果,不必寫出理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有一塊長方形活動場地,長為米,寬比長少米,實施“陽光體育”行動以后,學(xué)校為了擴大學(xué)生的活動場地,讓學(xué)生能更好地進行體育活動,將操場的長和寬都增加米.
(1)求活動場地原來的面積是多少平方米.(用含的代數(shù)式表示)
(2)若,求活動場地面積增加后比原來多多少平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD為BC邊上的高,動點P從點A出發(fā),沿A→D方向以 cm/s的速度向點D運動,過P點作矩形PDFE(E點在AC上),設(shè)△ABP的面積為S1,矩形PDFE的面積為S2,運動時間為t秒(0<t<8).
(1)經(jīng)過幾秒鐘后,S1=S2?
(2)經(jīng)過幾秒鐘后,S1+S2最大?并求出這個最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com