【題目】如圖,正方形ABCD的邊長為6,點E,F分別在邊AB,BC上,若F是BC的中點,且∠EDF=45°,則DE的長為( 。
A. B. C. D.
【答案】B
【解析】
延長F至G,使CG=AE,連接DG,由SAS證明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再證明△EDF≌△GDF,得出EF=GF,設AE=CG=x,則EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,在Rt△ADE中,由勾股定理求出DE即可.
解:延長F至G,使CG=AE,連接DG、EF,如圖所示:
∵四邊形ABCD是正方形,
∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
∴∠DCG=90°,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴DE=DG,∠ADE=∠CDG,
∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
∵∠EDF=45°,
∴∠GDF=45°,
在△EDF和△GDF中,,
∴△EDF≌△GDF(SAS),
∴EF=GF,
∵F是BC的中點,
∴BF=CF=3,
設AE=CG=x,則EF=GF=3+x,
在Rt△BEF中,由勾股定理得:32+(6﹣x)2=(3+x)2,
解得:x=2,即AE=2,
在Rt△ADE中,由勾股定理得:DE=;
故選:B.
科目:初中數學 來源: 題型:
【題目】圖(a)是正方形紙板制成的一副七巧板.
(1)請你在圖(a)中給它的每一小塊用①~⑦編號(編號直接標在每一小塊對應圖形內部的空白處;每小塊只能與一個編號對應,每個編號只能和一個小塊對應),并同時滿足以下三個條件:
條件1:編號為①~③的三小塊可以拼成一個軸對稱圖形;
條件2:編號為④~⑥的三小塊可以拼成一個中心對稱圖形;
條件3:編號為⑦的小塊是中心對稱圖形.
(2)請你在圖(b)中畫出編號為①~③的三小塊拼出的軸對稱圖形;在圖(c)中畫出編號為④~⑥的三小塊拼出的中心對稱圖形.(注意:沒有編號不得分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位需以“掛號信”或“特快專遞”方式向五所學校各寄一封信,這五封信的重量分別是.根據這五所學校的地址及信件的重量范圍,在郵局查得相關郵費標準如下:
業(yè)務種類 | 計費單位 | 資費標準/元 | 掛號費/(元/封) | 特制信封(元/個) |
掛號信 | 首重100g,每重20g | 0.8 | 3 | 0.5 |
續(xù)重101~2000g,每重100g | 2.00 | |||
特制信封 | 首重1000g內 | 5.00 | 3 | 1.0 |
(1)重量為90g的信若以“掛號信”方式寄出,郵寄費為多少元?若以“特快專遞”方式寄出呢?
(2)這五封信分別以怎樣的方式寄出最合算?請說明理由.
(3)通過解答上述問題,你有何啟示?(請你用一兩句話說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學習了統(tǒng)計知識后,小明就本班同學的上學方式進行了一次調查統(tǒng)計.圖(1)和圖(2)是他通過采集數據后,繪制的兩幅不完整的統(tǒng)計圖.請你根據圖中提供的信息,解答以下問題:
(1)求該班學生的人數;
(2)在圖(1)中,將表示“步行”的部分補充完整;
(3)如果全年級共600名同學,請你估算全年級步行上學的學生人數?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1、l2之間的距離為2,l2、l3之間的距離為3,則AC的長是_________;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列定義一種關于n的運算:①當n是奇數時,結果為3n+5②當n為偶數時,結果是(其中k是使是奇數的正整數),運算重復進行,如:取n=26,則26134411……若n=449,則第449次運算的結果是( )
A.1B.2C.7D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
小紅同學在學習過程中遇到這樣一道計算題“計算4×2.112-4×2.11×2.22+2.222”,她覺得太麻煩,估計應該有可以簡化計算的方法,就去請教崔老師.崔老師說:你完成下面的問題后就可能知道該如何簡化計算啦!
獲取新知:
請你和小紅一起完成崔老師提供的問題:
(1)填寫下表:
x=-1,y=1 | x=1,y=0 | x=3,y=2 | x=2,y=-1 | x=2,y=3 | |
A=2x-y | -3 | 2 | 4 | 5 | 1 |
B=4x2-4xy+y2 | 9 | 4 | 16 |
(2)觀察表格,你發(fā)現A與B有什么關系?
解決問題:
(3)請利用A與B之間的關系計算:4×2.112-4×2.11×2.22+2.222.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com