【題目】如圖,在Rt△ABC中,∠ACB90°,點(diǎn)D,F分別在ABAC上,CFCB.連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF

1)求證:△BCD≌△FCE;

2)若EF∥CD.求∠BDC的度數(shù).

【答案】1)證明見解析;(2900.

【解析】

試題(1)、根據(jù)旋轉(zhuǎn)圖形的性質(zhì)可得:CD=CE,∠DCE=90°,根據(jù)∠ACB=90°得出∠BCD=90°-∠ACD=∠FCE,結(jié)合已知條件得出三角形全等;(2)、根據(jù)全等得出∠BDC=∠E,∠BCD=∠FCE,從而得出∠DCE=90°,然后根據(jù)EF∥CD得出∠BDC=90°

試題解析:(1)、將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CE,

∴CD=CE,∠DCE=90°,

∵∠ACB=90°,

∴∠BCD=90°-∠ACD=∠FCE,

△BCD△FCE, CBCF

∵BCD∠FCE,CDCE,CB=CF∠BCD=∠FCE

∴△BCD≌△FCESAS).

2)、由(1)可知△BCD≌△FCE,

∴∠BDC=∠E,∠BCD=∠FCE,

∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,

∵EF∥CD,

∴∠E=180°-∠DCE=90°,

∴∠BDC=90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,E、F是對角線BD上的兩點(diǎn),且BE=DF. 求證:

(1)AE=CF;
(2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參觀上海世博會,某公司安排甲、乙兩車分別從相距300千米的上海、泰州兩地同時出發(fā)相向而行,甲到泰州帶客后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖像.
(1)請直接寫出甲離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛4.5小時后離各自出發(fā)點(diǎn)的距離相等,求乙車離出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,甲、乙兩車從各自出發(fā)地駛出后經(jīng)過多少時間相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)在x= 時,有最小值﹣ ,且函數(shù)的圖象經(jīng)過點(diǎn)(0,2),則此函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△AEB和Rt△AFC中,BE與AC相交于點(diǎn)M,與CF相交于點(diǎn)D,AB與CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.給出下列結(jié)論:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正確的結(jié)論是(  )

A. ①③④ B. ②③④ C. ①②③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線的對稱軸為x=﹣1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(﹣3,0)、C(0,﹣2).
(1)求這條拋物線的函數(shù)表達(dá)式.
(2)已知在對稱軸上存在一點(diǎn)P,使得△PBC的周長最小.請求出點(diǎn)P的坐標(biāo).
(3)若點(diǎn)D是線段OC上的一個動點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值,若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a≠0)(a≠0,a,b,C為常數(shù))的圖象,若關(guān)于x的一元二次方程ax2+bx+c=m有實數(shù)根,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊準(zhǔn)備開挖一條隧道,為了縮短工期,必須在山的兩側(cè)同時開挖,為了確保兩側(cè)開挖的隧道在同一條直線上,測量人員在如圖所示的同一高度定出了兩個開挖點(diǎn)PQ,然后在左邊定出開挖的方向線AP,為了準(zhǔn)確定出右邊開挖的方向線BQ,測量人員取一個可以同時看到點(diǎn)A,P,Q的點(diǎn)O,測得∠A=28°,AOC=100°,那么∠QBO應(yīng)等于多少度才能確保BQAP在同一條直線上?

查看答案和解析>>

同步練習(xí)冊答案