已知如圖,二次函數(shù)圖象的頂點為,與軸交于、兩點(在點右側(cè)),點、關(guān)于直線:對稱.
(1)求、兩點坐標(biāo),并證明點在直線上;
(2)求二次函數(shù)解析式;
(3)過點作直線∥交直線于點,、分別為直線和直線上的兩個動點,連接、、,求和的最小值.
【解析】(1)根據(jù)一元二次方程求得A點坐標(biāo),代入直線求證,(2)通過點H、B關(guān)于直線L對稱,求得H的坐標(biāo),從而解出二次函數(shù)的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即和的最小值
解:(1)依題意,得
解得,
∵點在點右側(cè)
∴點坐標(biāo)為,點坐標(biāo)為 (2分)
∵直線:
當(dāng)時,
∴點在直線上 (3分)
(2)∵點、關(guān)于過點的直線:對稱
∴
過頂點作交于點則,
∴頂點 (5分)
把 代入二次函數(shù)解析式,解得
∴二次函數(shù)解析式為 (7分)
(3)直線的解析式為
直線的解析式為
由 解得 即,則
∵點、關(guān)于直線對稱
∴的最小值是,
過作軸于D點。
過點作直線的對稱點,連接,交直線于
則,,
∴的最小值是,即的長
是的最小值
∵∥
∴
在Rt△BKQ, 由勾股定理得 (10分)
∴的最小值為(不同解法參照給分)
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,如圖11,二次函數(shù)圖象的頂點為,與軸交于、兩點(在點右側(cè)),點、關(guān)于直線:對稱.
(1)求、兩點坐標(biāo),并證明點在直線上;
(2)求二次函數(shù)解析式;
(3)過點作直線∥交直線于點,、分別為直線和直線上的兩個動點,連接、、,求和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,如圖11,二次函數(shù)圖象的頂點為,與軸交于、兩點(在點右側(cè)),點、關(guān)于直線:對稱.
(1)求、兩點坐標(biāo),并證明點在直線上;
(2)求二次函數(shù)解析式;
(3)過點作直線∥交直線于點,、分別為直線和直線上的兩個動點,連接、、,求和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省無錫市新區(qū)九年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題
已知如圖,二次函數(shù)圖象的頂點為,與軸交于、兩點(在點右側(cè)),點、關(guān)于直線:對稱.
(1)求、兩點坐標(biāo),并證明點在直線上;
(2)求二次函數(shù)解析式;
(3)過點作直線∥交直線于點,、分別為直線和直線上的兩個動點,連接、、,求和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)初三一模數(shù)學(xué)試題 題型:解答題
已知如圖,二次函數(shù)y=ax2 +bx+c的圖像過A、B、C三點
觀察圖像寫出A、B、C三點的坐標(biāo)
求出二次函數(shù)的解析式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com