【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時(shí)點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
【答案】A
【解析】設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y
∴當(dāng)C從D點(diǎn)運(yùn)動到E點(diǎn)時(shí),即0x2時(shí),y= ×2×2 (2x)×(2x)= x+2x.
當(dāng)A從D點(diǎn)運(yùn)動到E點(diǎn)時(shí),即2<x4時(shí),y= ×[2(x2)]×[2(x2)]= x4x+8
∴y與x之間的函數(shù)關(guān)系
由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應(yīng)。
所以答案是:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=kx2﹣7x﹣7的圖象與x軸有兩個(gè)交點(diǎn),則k的取值范圍為( )
A.k>
B.k> 且k≠0
C.
D. 且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠C=30°,AB⊥AD.
(1)求∠BDA的度數(shù);
(2)若AD=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為直線AB上的一點(diǎn),∠EOF為直角,OC平分∠BOE.
(1)如圖1,若∠AOE=45°,寫出∠COF等于多少度;
(2)如圖1,若∠AOE=求∠COF的度效(用含的代數(shù)式表示);
(3)如圖2,若∠AOE=OD平分∠AOC,且∠AOD-∠BOF=45°,求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)根據(jù)下表回答:
1 | 1.7 | 1.73 | 1.74 | 1.8 | 2 | |
1 | 2.89 | 2.9929 | 3.0276 | 3.24 | 4 |
①的平方根是_____________;
②由表可知,在表中哪兩個(gè)相鄰的數(shù)之間(小數(shù)部分是兩位小數(shù))?
(2)如圖,在平面直角坐標(biāo)系中,已知三點(diǎn)
①三角形的面積是_______
②分別將三點(diǎn)的橫坐標(biāo)乘,縱坐標(biāo)加,記坐標(biāo)變換后所對的點(diǎn)分別為在坐標(biāo)系中畫出以這三點(diǎn)為頂點(diǎn)的三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板的一條直角邊在同一條直線上,則∠1的度數(shù)為( )
A.75°
B.65°
C.45°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是( )
A.70°
B.65°
C.60°
D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x , 其對稱軸與兩拋物線所圍成的陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一轉(zhuǎn)盤中有A、B兩個(gè)區(qū)域,A區(qū)域所對的圓心角為120°,讓轉(zhuǎn)盤自由轉(zhuǎn)動兩次.利用樹狀圖或列表求出兩次指針都落在A區(qū)域的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com