【題目】如圖所示,在菱形紙片ABCD中,AB=4,∠BAD=60°,按如下步驟折疊該菱形紙片:
第一步:如圖①,將菱形紙片ABCD折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在邊CD上,折痕EF分別與邊AD、AB交于點(diǎn)E、F,折痕EF與對(duì)應(yīng)點(diǎn)A、A′的連線交于點(diǎn)G.
第二步:如圖②,再將四邊形紙片BCA′F折疊使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在A′F上,折痕MN分別交邊CD、BC于點(diǎn)M、N.
第三步:展開(kāi)菱形紙片ABCD,連接GC′,則GC′最小值是_____.
【答案】
【解析】
注意到G為AA'的中點(diǎn),于是可知G點(diǎn)的高度終為菱形高度的一半,同時(shí)注意到G在∠AFA'的角平分線上,因此作GH⊥AB于H,GP⊥A'F于P,則GP=GH,根據(jù)垂線段最短原理可知GH就是所求最小值.
解:如圖,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.
∵四邊形ABCD是菱形,
∴DA=AB=BC=CD=4,AB∥CD,
∴A'Q=DR,
∵∠BAD=60°,
∴A'Q=DR=AD=2,
∵A'與A關(guān)于EF對(duì)稱,
∴EF垂直平分AA',
∴AG=A'G,∠AFE=∠A'FE,
∴GP=PH,
又∵GH⊥AB,A'Q⊥AB
∴GH∥A'B,
∴GH=A'Q=DR=,
所以GC'≥GP=,當(dāng)且僅當(dāng)C'與P重合時(shí),GC'取得最小值.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:對(duì)于一些次數(shù)較高或者是比較復(fù)雜的式子進(jìn)行因式分解時(shí),換元法是一種常用的方法,下面是某同學(xué)用換元法對(duì)多項(xiàng)式進(jìn)行因式分解的過(guò)程.
解:設(shè)
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列問(wèn)題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的__________(填代號(hào)).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)按照“因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止”的要求,該多項(xiàng)式分解因式的最后結(jié)果為______________.
(3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,M是△ABC的邊BC的中點(diǎn),AN平分,BNAN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,AC=16.
(1)求證:BN=DN;
(2)求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某船上午11時(shí)30分在A處觀測(cè)海島B在北偏東60°方向,該船以每小時(shí)10海里的速度航行到C處,再觀測(cè)海島B在北偏東30°方向,又以同樣的速度繼續(xù)航行到D處,再觀測(cè)海島在北偏西30°方向,當(dāng)輪船到達(dá)C處時(shí)恰好與海島B相距20海里,請(qǐng)你確定輪船到達(dá)C處和D處的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)里,π,﹣1,0,+6,﹣1.08,10%,0.303003…,﹣,0.;自然數(shù)集合:{_____……}正數(shù)集合:{_____……}非正整數(shù)集合:{_____……}分?jǐn)?shù)集合:{_____……}
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1:,點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1.如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,那么sinα=_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,試求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一塊正方形ABCD木板上要貼三種不同的墻紙,正方形EFCG部分貼A型墻紙,△ABE部分貼B型墻紙,其余部分貼C型墻紙.A型、B型、C型三種墻紙的單價(jià)分別為每平方米60元、80元、40元.
探究1:如果木板邊長(zhǎng)為1米,F(xiàn)C=米,則一塊木板用墻紙的費(fèi)用需 元;
探究2:如果木板邊長(zhǎng)為2米,正方形EFCG的邊長(zhǎng)為x米,一塊木板需用墻紙的費(fèi)用為y元,
(1)用含x的代數(shù)式表示y(寫(xiě)過(guò)程).
(2)如果一塊木板需用墻紙的費(fèi)用為225元,求正方形EFCG的邊長(zhǎng)為多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com