【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過(guò)點(diǎn)A,作ABx軸于點(diǎn)B,將ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為

【答案】(1,

【解析】

試題分析:過(guò)點(diǎn)C作CEx軸于點(diǎn)E,

OB=2,ABx軸,點(diǎn)A在直線y=x上,

AB=2,OA==4,

RTABO中,tanAOB==

∴∠AOB=60°,

∵△CBD是由ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,

∴∠D=AOB=OBD=60°,AO=CD=4,

∴△OBD是等邊三角形,

DO=OB=2,DOB=COE=60°,

CO=CD﹣DO=2,

在RTCOE中,OE=COcosCOE=2×=1,

CE=COsinCOE=2×=,

點(diǎn)C的坐標(biāo)為(﹣1,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,cotADB=,AB=16.點(diǎn)E在射線BC上,點(diǎn)F在線段BD上,且DEF=ADB.

(1)求線段BD的長(zhǎng);

(2)設(shè)BE=x,DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;

(3)當(dāng)DEF為等腰三角形時(shí),求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖形的操作過(guò)程:
在圖①中,將線段A1A2向右平移1個(gè)單位到B1B2 , 得到封閉圖形A1A2B2B1(即陰影部分);
在圖②中,將折線A1A2A3向右平移1個(gè)單位到B1B2B3 , 得到封閉圖形A1A2A3B3B2B1(即陰影部分).

(1)在圖③中,請(qǐng)你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫出陰影;

(2)請(qǐng)你分別寫出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:
S1= , S2= , S3=
(3)聯(lián)想與探索:
如圖④在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少并說(shuō)明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)﹣4的絕對(duì)值等于(  )

A. 4B. 4C. 0D. ±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關(guān)系,說(shuō)出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,并說(shuō)明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關(guān)系,不需要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(
A.9的平方根是3
B. 的算術(shù)平方根是±2
C. 的算術(shù)平方根是4
D. 的平方根是±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AB=3cm,BC=5cm,ACAB.ACD沿AC的方向勻速平移得到PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB方向勻速移動(dòng),速度為1cm/s;當(dāng)PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖.設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),PQAB?

(2)當(dāng)t=3時(shí),求QMC的面積;

(3)是否存在某一時(shí)刻t,使PQMQ?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一平面內(nèi),兩條不重合的直線的位置關(guān)系是( 。
A.平行或垂直
B.平行或相交
C.平行、相交或垂直
D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n )的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是(
A.4n
B.4m
C.2(m+n)
D.4(m﹣n)

查看答案和解析>>

同步練習(xí)冊(cè)答案