【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為軸于點(diǎn),反比例函數(shù)的圖像的一支分別交于點(diǎn),延長交反比例函數(shù)的圖像的另一支于點(diǎn)E,已知D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式及直線OA的解析式;
(2)連接BC,已知,求
(3)若在軸上有兩點(diǎn),將直線繞點(diǎn)旋轉(zhuǎn),仍與交于,能否構(gòu)成以為頂點(diǎn)的四邊形為菱形,如果能請(qǐng)求出的值,如果不能說明理由.
【答案】(1),;(2)24;(3)不能,理由見解析
【解析】
(1)根據(jù)已知條件可求A、D的坐標(biāo),用待定系數(shù)法即求出反比例函數(shù)解析式;由點(diǎn)A坐標(biāo)求直線OA的解析式.
(2)把直線OA與反比例函數(shù)解析式聯(lián)立方程組,即求出交點(diǎn)C,E的坐標(biāo),再把△CEB分成△COB與△EOB,以OB為公共底,點(diǎn)C和點(diǎn)E縱坐標(biāo)的絕對(duì)值為高即求出三角形面積.
(3)若為菱形,則對(duì)角線互相垂直,但CE不與x軸垂直,矛盾,故不能成為菱形.
解:(1)因?yàn)辄c(diǎn)A的坐標(biāo)為軸于B,所以
,B(8,0)
點(diǎn)D在反比例函數(shù)的圖象上
所以反比例函數(shù)的解析式為
設(shè)直線OA的解析式
解得
所以直線OA的解析式為;
(2)聯(lián)立,解得或
∴又
;
(3)因?yàn)?/span>所在直線不可能與軸垂直,即不能與垂直
所以為頂點(diǎn)的四邊形不能是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓O中,弦AB與CD相交于點(diǎn)E,且弧AC與弧BD相等.點(diǎn)D在劣弧AB上,聯(lián)結(jié)CO并延長交線段AB于點(diǎn)F,聯(lián)結(jié)OA、OB.當(dāng)OA=,且tan∠OAB=.
(1)求弦CD的長;
(2)如果△AOF是直角三角形,求線段EF的長;
(3)如果S△CEF=4S△BOF,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形DEFG的邊EF在△ABC的邊BC上,頂點(diǎn)D,G分別在邊AB,AC上,AH⊥BC,垂足為H,AH交DG于點(diǎn)P,已知BC=6,AH=4.當(dāng)矩形DEFG面積最大時(shí),HP的長是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“機(jī)動(dòng)車行駛到斑馬線要禮讓行人”等交通法規(guī)實(shí)施后,某校數(shù)學(xué)課外實(shí)踐小組對(duì)這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實(shí)踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次共調(diào)查 名學(xué)生;扇形統(tǒng)計(jì)圖中C所對(duì)應(yīng)扇形的圓心角度數(shù)是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法求丙和丁兩名學(xué)生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一款拋物線型落地?zé)敉彩疽鈭D,防滑螺母C為拋物線支架的最高點(diǎn),燈罩D距離地面1.5米,最高點(diǎn)C距燈柱的水平距離為1.6米,燈柱AB1.5米,若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為多少米( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD,兩條對(duì)角線相交于O點(diǎn),過點(diǎn)O作AC的垂線EF,分別交AD、BC于E、F點(diǎn),連結(jié)CE,若OCcm,CD=4cm,則DE的長為( )
A.cmB.5cmC.3cmD.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗疫期間,藥店銷售兩種類型的口罩,已知銷售只型口罩和只型口罩的潤為元,售只型口罩和只型口罩的利潤為元,
(1)每只型口罩和型口罩的利潤;
(2)該藥店計(jì)劃一次購進(jìn)兩種型號(hào)的口罩只,其中型口罩的進(jìn)貨量不超過型口罩的倍,設(shè)購進(jìn)型罩只,這口罩的利潤為元;
①求關(guān)于的函數(shù)關(guān)系式;
②藥店購進(jìn)型口各多少才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),,過點(diǎn)作直線,
(1)若,點(diǎn)是線段的中點(diǎn),點(diǎn)在射線上,當(dāng)是邊長為5的等腰三角形,共有幾個(gè)這樣的點(diǎn),并嘗試求出點(diǎn)的坐標(biāo);
(2)若直線與不平行,在直線上,是否存在點(diǎn),使得是直角三角形,且,若存在,求出這樣的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com