類比聯(lián)想:既然任意一個三角形的三邊的垂直平分線交于一點,那三角形的三邊上的中線是否也交于一點;三個角的平分線是否也交于一點;試通過折紙或用直尺、圓規(guī)畫圖驗證這種猜想.

解:(1)如圖,設△ABC的兩條中線BD、CE相交于點G,連接AG并延長交BC于M,作BN∥CE,連接CN,
∵E是AB的中點,BN∥CE,
∴點G是AN的中點,
∵點D是AC的中點,
∴GD∥CN,
∴四邊形BNCG是平行四邊形,
∴BC、GN互相平分,即點M是BC的中點,AM是BC的中線,即△ABC的三條中線交于一點;

(2)如圖,△ABC中,∠A、∠B的平分線交于點P,過P作AB、BC、AC的垂線,垂足分別為D、E、F,
∵AP、BP分別為∠A、∠B的平分線,
∴PF=PD=PE,
∵PF=PE,PE⊥BC,PF⊥AC,
∴點P在∠C的平分線上,
∴三角形的三個內角的角平分線相交于一點.

分析:(1)根據(jù)題意畫出圖形,設△ABC的兩條中線BD、CE相交于點G,連接AG并延長交BC于M,作BN∥CE,連接CN,由平行四邊形的判定定理可判斷出四邊形BNCG是平行四邊形,再由平行四邊形的對角線互相平分即可得出結論;
(2)根據(jù)題意畫出圖形,由角平分線的性質判斷出PF=PE即可.
點評:本題考查的是三角形的三個角平分線、三條邊的中線交于一點的證明過程,是中學階段必須掌握的知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、類比聯(lián)想:既然任意一個三角形的三邊的垂直平分線交于一點,那三角形的三邊上的中線是否也交于一點;三個角的平分線是否也交于一點;試通過折紙或用直尺、圓規(guī)畫圖驗證這種猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義一種對于三位數(shù)
.
abc
(a、b、c不完全相同)的“F運算”:重排
.
abc
的三個數(shù)位上的數(shù)字,計算所得最大三位數(shù)和最小三位數(shù)的差(允許百位數(shù)字為零).例如
.
abc
=213
時,則

(1)579經(jīng)過三次“F運算”得
495
495
;
(2)假設
.
abc
中a>b>c,則
.
abc
經(jīng)過一次“F運算”得
99(a-c)
99(a-c)
(用代數(shù)式表示);
(3)猜想;任意一個三位數(shù)經(jīng)過若干次“F運算’’都會得到一個定值
495
495
,請證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

類比聯(lián)想:既然任意一個三角形的三邊的垂直平分線交于一點,那三角形的三邊上的中線是否也交于一點;三個角的平分線是否也交于一點;試通過折紙或用直尺、圓規(guī)畫圖驗證這種猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:《1.3 線段的垂直平分線》2010年同步練習2(解析版) 題型:解答題

類比聯(lián)想:既然任意一個三角形的三邊的垂直平分線交于一點,那三角形的三邊上的中線是否也交于一點;三個角的平分線是否也交于一點;試通過折紙或用直尺、圓規(guī)畫圖驗證這種猜想.

查看答案和解析>>

同步練習冊答案