【題目】如圖,過點(diǎn)A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6B、C兩點(diǎn),若函數(shù)y=(x0)的圖象△ABC的邊有公共點(diǎn),則k的取值范圍是( 。

A. 5k20 B. 8k20 C. 5k8 D. 9k20

【答案】A

【解析】分析:根據(jù)題意可以分別求得點(diǎn)B、點(diǎn)C的坐標(biāo),從而可以得到k的取值范圍,本題得以解決.

詳解:過點(diǎn)A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點(diǎn),

點(diǎn)B的縱坐標(biāo)為5,點(diǎn)C的橫坐標(biāo)為4,

將y=5代入y=﹣x+6,得x=1;將x=4代入y=﹣x+6得,y=2,

點(diǎn)B的坐標(biāo)為(1,5),點(diǎn)C的坐標(biāo)為(4,2),

函數(shù)y=(x>0)的圖象與ABC的邊有公共點(diǎn),點(diǎn)A(4,5),點(diǎn)B(1,5),

∴1×5≤k≤4×5

即5≤k≤20,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中, ABC 90, CD AD , BE AD AD2 CD2 2 AB2,若四邊形 ABCD 的面積為18,則 BE 的長為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(1,1),C(1,﹣2)D(1,﹣2).把一條長為2019個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按ABCDA的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);

2P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)C,連接PO,若POC的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在甲、乙兩名同學(xué)進(jìn)行400米跑步比賽中,路程S(米)與時間(t)之間的函數(shù)關(guān)系的圖像分別為折線OAB和線段OC請根據(jù)圖上信息回答下列問題

1 先到達(dá)終點(diǎn);

2)第 秒時, 追上 ;

3)比賽過程中, 的速度適中保持不變;

4)優(yōu)勝者在比賽過程中所跑的路程S(米)關(guān)于時間t(秒)的函數(shù)解析式及定義域?yàn)?/span> .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸交于點(diǎn)B,直線y軸交于點(diǎn)C,且它們都經(jīng)過點(diǎn)D1,

1)求C、B兩點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)Pt,0,t>3,如果BDPCDP的面積相等,求t的值;

3)在(2)的條件下,在第四象限內(nèi),以CP為腰作等腰直角三角形CPQ,請直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,點(diǎn)DAB上一點(diǎn),以BD為直徑的⊙OAC相切于點(diǎn)P

(1)求證:BP平分∠ABC

(2)若PC=1,AP=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,描述了林老師某日傍晚的一段生活過程:他晚飯后,從家里散步走到超市,在超市停留了一會兒,馬上又去書店,看了一會兒書,然后快步走回家,圖象中的平面直角坐標(biāo)系中x表示時間,y表示林老師離家的距離,請你認(rèn)真研讀這個圖象,根據(jù)圖象提供的信息,以下說法錯誤的是( )

A. 林老師家距超市1.5千米

B. 林老師在書店停留了30分鐘

C. 林老師從家里到超市的平均速度與從超市到書店的平均速度是相等的

D. 林老師從書店到家的平均速度是10千米/時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的小圓與半徑為2的大圓,有一個公共點(diǎn)與數(shù)軸上的原點(diǎn)重合,兩圓在數(shù)軸上做無滑動的滾動,小圓的運(yùn)動速度為每秒π個單位,大圓的運(yùn)動速度為每秒個單位,(1)若小圓不動,大圓沿?cái)?shù)軸來回滾動,規(guī)定大圓向右滾動的時間記為正數(shù),向左滾動時間即為負(fù)數(shù),依次滾動的情況錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3,+6

(1)第    次滾動后,大圓與數(shù)軸的公共點(diǎn)到原點(diǎn)的距離最遠(yuǎn);

(2)當(dāng)大圓結(jié)束運(yùn)動時,大圓運(yùn)動的路程共有多少?此時兩圓與數(shù)軸重合的點(diǎn)之間的距離是多少?(結(jié)果保留π

3)若兩圓同時在數(shù)軸上各自沿著某一方向連續(xù)滾動,滾動一段時間后兩圓與數(shù)軸重合的點(diǎn)之間相距,求此時兩圓與數(shù)軸重合的點(diǎn)所表示的數(shù).

查看答案和解析>>

同步練習(xí)冊答案