【題目】已知:,⊙經(jīng)過點(diǎn)、.以為一邊畫平行四邊形,另一邊經(jīng)過點(diǎn)(如圖1).以點(diǎn)為圓心,為半徑畫弧,交線段于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合).

(1)求證:;

(2)如果⊙的半徑長為(如圖2),設(shè),,求關(guān)于的函數(shù)解析式,并寫出它的定義域;

(3)如果⊙的半徑長為,聯(lián)結(jié),當(dāng)時(shí),求的長.

【答案】(1)證明見解析;(2),得1分,函數(shù)定義域,(3)3.

【解析】解決本題方法是根據(jù)題意添加輔助線,利用平行四邊形的性質(zhì)和全等三角形性質(zhì)解題即可.

解:(1)聯(lián)結(jié)(如圖8-1),

易得.

∵四邊形是平行四邊形,∴,.

,,∴.

又 ∵,∴四邊形是等腰梯形.∴.

又 ∵,∴.

.

AODBOE中,∵,,

AODBOE..

方法2:∵,,,∴AODBOE.……

方法3:∵,,,∴AODBOE.……

方法4:如圖8-2,過點(diǎn),過點(diǎn),過點(diǎn).……

方法5:如圖8-3,過點(diǎn),垂足為,聯(lián)結(jié)、.……

(2)方法1:如圖9-1,

過點(diǎn),垂足為,過點(diǎn),垂足為.

聯(lián)結(jié),,得1分;得到,得2分;在Rt△ADG中,寫出,,得1分;利用得到,得1分,函數(shù)定義域,.

(3)如圖10-1,

過點(diǎn),交于點(diǎn),交于點(diǎn).證明四邊形是平行四邊形,利用得到,利用AMNCMO得到,進(jìn)而得到的垂直平分線,,利用得到.

方法2.如圖10-2;方法3:如圖10-3;方法4(利用圓周角,略).

“點(diǎn)睛”本題考查了圓的綜合題:熟練掌握圓心角、弧、弦、弦心距之間的關(guān)系和三角形全等的判定與性質(zhì),也考查了分類討論的思想和勾股定理.本題時(shí)要注意一題多解的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x2+2x﹣3=0的解是( 。

A. x1=1,x2=3 B. x1=1,x2=﹣3

C. x1=﹣1,x2=3 D. x1=﹣1,x2=﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方便交通,綠色出行,人們常選擇以共享單車作為代步工具、圖(1)所示的是一輛自行車的實(shí)物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45cm60cm,且它們互相垂直,座桿CE的長為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°

(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259tan75°=3.732

圖(1 圖(2

1)求車架檔AD的長;

2)求車座點(diǎn)E到車架檔AB的距離(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF

(1)求證:CF=2AF;

(2)求tan∠CFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別記為a,b,c,由下列條件不能判定△ABC為直角三角形的是(  )

A. A+∠B=C B. A:B:C=1:2:3

C. a2=c2﹣b2 D. a:b:c=3:4:6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)(2,6)關(guān)于x軸對稱點(diǎn)坐標(biāo)為( )

A.(2,6) B.(2,6) C.(2,6) D.(62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)(1,﹣1),則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩條邊分別是3,6,則第三邊的長為

查看答案和解析>>

同步練習(xí)冊答案