【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線分別交于點,為底邊邊上的中點,點為線段上一動點,則的周長最小值是多少?

【答案】8cm.

【解析】

連接ADEF與點M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當A、M、D在一條直線上時,MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長.

連接AD交EF與點M′,連結(jié)AM.

∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴SABC=BCAD=×4×AD=12,解得AD=6,
∵EF是線段AB的垂直平分線,
∴AM=BM.
∴BM+MD=MD+AM.
∴當點M位于點M′處時,MB+MD有最小值,最小值6.
∴△BDM的周長的最小值為DB+AD=2+6=8.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=CD=6cmBC=10cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設(shè)點P的運動時間為t秒:

1PC=______cm.(用t的代數(shù)式表示)

2)當t為何值時,ABP≌△DCP

3)當點P從點B開始運動,同時,點Q從點C出發(fā),以v cm/秒的速度沿CD向點D運動,是否存在這樣v的值,使得ABPPQC全等?若存在,請求出v的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AEBD交于點F,

(1)如圖1,若∠ACD=60°,則∠AFB=   ;如圖2,若∠ACD=90°,則∠AFB=   ;如圖3,若∠ACD=120°,則∠AFB=   ;

(2)如圖4,若∠ACD=α,則∠AFB=   (用含α的式子表示);

(3)將圖4中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFBα的有何數(shù)量關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(﹣2,2),B(0,5),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(﹣2,﹣6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2 , 請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的分式方程.

(1)若方程的增根為x=2,求a的值;

(2)若方程有增根,求a的值;

(3)若方程無解,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+x﹣2與x軸交于A,B兩點,與y軸交于點C.

(1)求點A,點B和點C的坐標;
(2)在拋物線的對稱軸上有一動點P,求PB+PC的值最小時的點P的坐標;
(3)若點M是直線AC下方拋物線上一動點,求四邊形ABCM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AD=4,將矩形ABCD繞點D順時針旋轉(zhuǎn)90°得到矩形A′B′C′D′,則點B經(jīng)過的路徑與BA,AC′,C′B′所圍成封閉圖形的面積是多少?(結(jié)果保留π).

查看答案和解析>>

同步練習冊答案