【題目】如圖,C是線段AB的中點(diǎn).
(1)若點(diǎn)D在CB上,且DB=2cm,AD=8cm,求線段CD的長(zhǎng)度;
(2)若將(1)中的“點(diǎn)D在CB上”改為“點(diǎn)D在CB的延長(zhǎng)線上”,其它條件不變,請(qǐng)畫出相應(yīng)的示意圖,并求出此時(shí)線段CD的長(zhǎng)度.
【答案】(1)3cm;(2)5cm.
【解析】試題分析:(1)根據(jù)線段的和,可得AB的長(zhǎng),根據(jù)線段中點(diǎn)的性質(zhì),可得BC的長(zhǎng),再根據(jù)線段的差,可得答案.
(2)根據(jù)題意畫出圖形,利用線段的差,可得AB的長(zhǎng),根據(jù)線段中點(diǎn)的性質(zhì),可得BC的長(zhǎng),再根據(jù)線段的和,可得答案.
解:(1)由線段的和差,得AB=AD+DB=8+2=10cm,
由C是AB的中點(diǎn),得BC=AB=5cm,
由線段的和差,得CD=CB﹣DB=5﹣2=3cm;
(2)如圖1
,
由線段的和差,得AB=AD﹣DB=8﹣2=6cm,
由C是AB的中點(diǎn),得BC=AB=3cm,
由線段的和差,得CD=CB+DB=3+2=5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C、D都在第一象限.
(1)如果∠BAO=45°,直接寫出點(diǎn)P的坐標(biāo);
(2)求證:點(diǎn)P在∠AOB的平分線上;
(3)設(shè)點(diǎn)P到x軸的距離為h,直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名八年級(jí)學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了多少名學(xué)生?
(2)求扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是( )
A. 8 B. 10 C. 3π D. 5π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A=90°,AB=AC , BC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在同一平面內(nèi)OA⊥OB,OC是OA繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.
(1)若α=60即∠AOC=60°時(shí),求∠BOC,∠DOE.
(2)在α的變化過程中,∠DOE的度數(shù)是一個(gè)定值嗎?若是定值,請(qǐng)求出這個(gè)值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com