精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.

(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;

(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;

(3)連接ME,并直接寫出EM的長.

【答案】(1)畫圖見解析;(2)畫圖見解析;(3)

【解析】

(1)直接利用直角三角形的性質結合勾股定理得出符合題意的圖形;

(2)根據矩形的性質畫出符合題意的圖形;
(3)根據題意利用勾股定理得出結論

(1)如圖所示;

(2)如圖所示;

(3)如圖所示,在直角三角形中,根據勾股定理得EM=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某市2017年國內生產總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,過A、C、D三點的⊙OAB于點E,連接DE、CE,CDE=BCE.

(1)求證:AD=CE;

(2)判斷直線BC與⊙O的位置關系,并說明理由;

(3)若BC=4,DE=10,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDE⊥AC分別交AC、AB的延長線于點E、F.

(1)求證:EF⊙O的切線;

(2)若AC=4,CE=2,求的長度.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,tanACB=2,D在△ABC內部,且AD=CD,ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC內接于⊙O,AD平分∠BAC.

(1)如圖1,求證:;

(2)如圖2,當BC為直徑時,作BEAD于點E,CFAD于點F,求證:DE=AF;

(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數圖象如圖所示.

1)求關于的函數解析式;

2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2.善于思考的小明進行了以下探索:設ab=(mn)2(其中ab,m,n均為整數),則有abm2+2n2+2mn,∴am2+2n2,b=2mn.這樣小明就找到了一種把類似ab的式子化為平方式的方法.請你仿照小明的方法解決下列問題:

(1)a,b,mn均為正整數時,若ab=(mn)2,用含m,n的式子分別表示a,b,得a______________,b________;

(2)利用所探索的結論,找一組正整數a,b,mn填空:

________________=(________+________)2

(3)a+4=(mn)2,且a,mn均為正整數,求a的值.

(4)試化簡.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,,點的中點,平分.

1)求證:;

2)若,試判斷的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案