分析 (1)作EH⊥BC交BD于H,由正方形的性質(zhì)得出AB∥CF,∠BCD=90°,∠EBH=45°,AB⊥BC,證出△BEH是等腰直角三角形,得出BE=EH,證出EH=DF,由平行線的性質(zhì)得出∠HEG=∠DFG,由AAS證明△GHE≌△GFD,得出對(duì)應(yīng)邊相等即可;
(2)過(guò)G作CD的平行線,交AD于M,BC于N,由等邊三角形的性質(zhì)得出CN=EN,設(shè)CN=EN=x,則CG=CE=2x,GN=$\sqrt{3}$x,作GO⊥CD于O,則GM=GO=CN=x,MN=CD=4得出方程,解方程求出x=2$\sqrt{3}$-2,得出DF=BE=BC-CE=8-4$\sqrt{3}$,四邊形AFDG的面積=△ADF的面積+△ADG的面積,即可得出結(jié)果.
解答 (1)證明:作EH⊥BC交BD于H,如圖1所示:
∵四邊形ABCD是正方形,
∴AB∥CF,∠BCD=90°,∠EBH=45°,AB⊥BC,
∴△BEH是等腰直角三角形,
∴BE=EH,
∵BE=DF,
∴EH=DF,
∵EH⊥BC,AB∥CF,
∴EH∥CF,
∴∠HEG=∠DFG,
在△GEH和△GFD中,
$\left\{\begin{array}{l}{∠HEG=∠DFG}&{\;}\\{∠EGH=∠FGD}&{\;}\\{EH=DF}&{\;}\end{array}\right.$,
∴△GHE≌△GFD(AAS),
∴EG=FG;
(2)解:過(guò)G作CD的平行線,交AD于M,BC于N,如圖2所示:
∵△GCE為等邊三角形,
∴CN=EN,
設(shè)CN=EN=x,則CG=CE=2x,GN=$\sqrt{3}$x,
作GO⊥CD于O,則GM=GO=CN=x,
∵M(jìn)N=CD=4,
∴x+$\sqrt{3}$x=3,
解得:x=2$\sqrt{3}$-2,
∵DF=BE=BC-CE=4-2x=4-2(2$\sqrt{3}$-2)=8-4$\sqrt{3}$,
∴四邊形AFDG的面積=△ADF的面積+△ADG的面積=$\frac{1}{2}$AD(DF+GM)=$\frac{1}{2}$×4(8-4$\sqrt{3}$+2$\sqrt{3}$-2)=12-4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、等邊三角形的性質(zhì)等知識(shí);熟練掌握正方形和等邊三角形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2016 | B. | -2016 | C. | $\frac{1}{2016}$ | D. | -$\frac{1}{2016}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3a+2b=5ab | B. | a•a4=a4 | C. | (-a3b)2=a6b2 | D. | a6÷a2=a3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
崗位 | 董事長(zhǎng) | 副董事長(zhǎng) | 董事 | 總經(jīng)理 | 經(jīng)理 | 部門A | 部門B | 部門C | 部門D | 部門E |
人數(shù) | 1 | 1 | 3 | 1 | 4 | 5 | 12 | 20 | 2 | 1 |
月工資數(shù)(元) | 15000 | 12000 | 10000 | 9000 | 4000 | 2000 | 1800 | 1500 | 800 | 700 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com