14.如圖,把一個菱形繞著它的對角線的交點旋轉(zhuǎn)90°,旋轉(zhuǎn)前后的兩個菱形構(gòu)成一個“星形”(陰影部分),若菱形的一個內(nèi)角為60°,邊長為2,則該“星形”的面積是6$\sqrt{3}$-6.

分析 根據(jù)菱形的性質(zhì)以及AB=2,∠BAD=60°,可得出線段AO和BO的長度,同理找出A′O、D′O的長度,結(jié)合線段間的關(guān)系可得出AD′的長度,通過角的計算得出∠AED′=30°=∠EAD′,即找出D′E=AD′,再通過解直角三角形得出線段EF的長度,利用分割圖形法結(jié)合三角形的面積公式以及菱形的面積公式即可求出陰影部分的面積.

解答 解:在圖中標(biāo)上字母,令A(yù)B與A′D′的交點為點E,過E作EF⊥AC于點F,如圖所示.

∵四邊形ABCD為菱形,AB=2,∠BAD=60°,
∴∠BAO=30°,∠AOB=90°,
∴AO=AB•cos∠BAO=$\sqrt{3}$,BO=AB•sin∠BAO=1.
同理可知:A′O=$\sqrt{3}$,D′O=1,
∴AD′=AO-D′O=$\sqrt{3}$-1.
∵∠A′D′O=90°-30°=60°,∠BAO=30°,
∴∠AED′=30°=∠EAD′,
∴D′E=AD′=$\sqrt{3}$-1.
在Rt△ED′F中,ED′=$\sqrt{3}$-1,∠ED′F=60°,
∴EF=ED′•sin∠ED′F=$\frac{3-\sqrt{3}}{2}$.
∴S陰影=S菱形ABCD+4S△AD′E=$\frac{1}{2}$×2AO×2BO+4×$\frac{1}{2}$AD′•EF=6$\sqrt{3}$-6.
故答案為:6$\sqrt{3}$-6.

點評 本題考查了菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、解直角三角形、菱形的面積公式以及三角形的面積公式,解題的關(guān)鍵是求出△AD′E的面積.本題屬于中檔題,難度不小,歷年來時常會考到周長,今年碰到了求面積,解決該題的技巧是分割圖形,將陰影部分分割成菱形與四個全等的三角形,求出其中任意一個三角形的面積是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.一個不透明的袋子中裝有分別標(biāo)著數(shù)字1,2,3,4,5的五個乒乓球,現(xiàn)從袋中隨機摸出一個乒乓球,則摸出的這個乒乓球上的數(shù)字為偶數(shù)的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.某舞蹈隊10名隊員的年齡分布如表所示:
年齡(歲)13141516
人數(shù)2431
則這10名隊員年齡的眾數(shù)是14歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.光伏發(fā)電惠民生,據(jù)衢州晚報載,某家庭投資4萬元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30度,其它天氣平均每天可發(fā)電5度,已知某月(按30天計)共發(fā)電550度.
(1)求這個月晴天的天數(shù).
(2)已知該家庭每月平均用電量為150度,若按每月發(fā)電550度計,至少需要幾年才能收回成本(不計其它費用,結(jié)果取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.關(guān)于一組數(shù)據(jù):2,4,8,3,3,下列說法不正確的是( 。
A.中位數(shù)是3B.眾數(shù)是3C.平均數(shù)是4D.方差是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.問題提出:如何將邊長為n(n≥5,且n為整數(shù))的正方形分割為一些1x5或2×3的矩形(axb 的矩形指邊長分別為a,b的矩形)?
問題探究:我們先從簡單的問題開始研究解決,再把復(fù)雜問題轉(zhuǎn)化為已解決的問題.
探究一:
如圖①,當(dāng)n=5時,可將正方形分割為五個1×5的矩形.
如圖②,當(dāng)n=6時,可將正方形分割為六個2×3的矩形.
如圖③,當(dāng)n=7時,可將正方形分割為五個1×5的矩形和四個2×3的矩形
如圖④,當(dāng)n=8時,可將正方形分割為八個1×5的矩形和四個2×3的矩形
如圖⑤,當(dāng)n=9時,可將正方形分割為九個1×5的矩形和六個2×3的矩形

探究二:
當(dāng)n=10,11,12,13,14時,分別將正方形按下列方式分割:

所以,當(dāng)n=10,11,12,13,14時,均可將正方形分割為一個5×5的正方形、一個(n-5 )×( n-5 )的正方形和兩個5×(n-5)的矩形.顯然,5×5的正方形和5×(n-5)的矩形均可分割為1×5的矩形,而(n-5)×(n-5)的正方形是邊長分別為5,6,7,8,9 的正方形,用探究一的方法可分割為一些1×5或2×3的矩形.
探究三:
當(dāng)n=15,16,17,18,19時,分別將正方形按下列方式分割:

請按照上面的方法,分別畫出邊長為18,19的正方形分割示意圖.
所以,當(dāng)n=15,16,17,18,19時,均可將正方形分割為一個10×10的正方形、一個(n-10 )×(n-10)的正方形和兩個10×(n-10)的矩形.顯然,10×10的正方形和10×(n-10)的矩形均可分割為1x5的矩形,而(n-10)×(n-10)的正方形又是邊長分別為5,6,7,8,9的正方形,用探究一的方法可分割為一些1×5或2×3的矩形.
問題解決:如何將邊長為n(n≥5,且n為整數(shù))的正方形分割為一些1×5或2×3的矩形?請按照上面的方法畫出分割示意圖,并加以說明.
實際應(yīng)用:如何將邊長為61的正方形分割為一些1×5或2×3的矩形?(只需按照探究三的方法畫出分割示意圖即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.我們知道:光反射時,反射光線、入射光線和法線在同一平面內(nèi),反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如右圖,AO為入射光線,入射點為O,ON為法線(過入射點O且垂直于鏡面的直線),OB為反射光線,此時反射角∠BON等于入射角∠AON.
問題思考:
(1)如圖1,一束光線從點A處入射到平面鏡上,反射后恰好過點B,請在圖中確定平面鏡上的入射點P,保留作圖痕跡,并簡要說明理由;
(2)如圖2,兩平面鏡OM、ON相交于點O,且OM⊥ON,一束光線從點A出發(fā),經(jīng)過平面鏡反射后,恰好經(jīng)過點B.小昕說,光線可以只經(jīng)過平面鏡OM反射后過點B,也可以只經(jīng)過平面鏡ON反射后過點B.除了小昕的兩種做法外,你還有其它做法嗎?如果有,請在圖中畫出光線的行進(jìn)路線,保留作圖痕跡,并簡要說明理由;

問題拓展:
(3)如圖3,兩平面鏡OM、ON相交于點O,且∠MON=30°,一束光線從點S出發(fā),且平行于平面鏡OM,第一次在點A處反射,經(jīng)過若干次反射后又回到了點S,如果SA和AO的長均為1m,求這束光線經(jīng)過的路程;
(4)如圖4,兩平面鏡OM、ON相交于點O,且∠MON=15°,一束光線從點P出發(fā),經(jīng)過若干次反射后,最后反射出去時,光線平行于平面鏡OM.設(shè)光線出發(fā)時與射線PM的夾角為θ(0°<θ<180°),請直接寫出滿足條件的所有θ的度數(shù)(注:OM、ON足夠長)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.某職業(yè)高中機電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

同步練習(xí)冊答案