分析 (1)根據(jù)垂直平分線的判定定理證明即可;
(2)根據(jù)垂直的定義和勾股定理解答即可;
(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計算.
解答 解:(1)四邊形ABCD是垂美四邊形.
證明:∵AB=AD,
∴點A在線段BD的垂直平分線上,
∵CB=CD,
∴點C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形;
(2)猜想結(jié)論:垂美四邊形的兩組對邊的平方和相等.
如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,
求證:AD2+BC2=AB2+CD2
證明:∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
$\left\{\begin{array}{l}{AG=AC}\\{∠GAB=∠CAE}\\{AB=AE}\end{array}\right.$,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4$\sqrt{2}$,BE=5$\sqrt{2}$,
∴GE2=CG2+BE2-CB2=73,
∴GE=$\sqrt{73}$.
點評 本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì)、垂直的定義、勾股定理的應(yīng)用,正確理解垂美四邊形的定義、靈活運用勾股定理是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$)2015 | B. | ($\frac{1}{2}$)2016 | C. | ($\frac{\sqrt{3}}{3}$)2016 | D. | ($\frac{\sqrt{3}}{3}$)2015 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3.5×10-6 | B. | 3.5×106 | C. | 3.5×10-5 | D. | 35×10-5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com