【題目】問題情境:綜合實踐活動課上,同學(xué)們圍繞“已知三角形三邊的長度,求三角形的面積”開展活動,啟航小組同學(xué)想到借助正方形網(wǎng)格解決問題
問題解決:圖(1)、圖(2)都是6×6的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點,操作發(fā)現(xiàn),啟航小組同學(xué)在圖(1)中畫出△ABC,其頂點A,B,C都在格點上,同時構(gòu)造長方形CDEF,使它的頂點都在格點上,且它的邊EF經(jīng)過點A,ED經(jīng)過點B.同學(xué)們借助此圖求出了△ABC的面積.
(1)在圖(1)中,△ABC的三邊長分別是AB= ,BC= ,AC= .△ABC的面積是 .
(2)已知△PMN中,PM=,MN=2,NP=.請你根據(jù)啟航小組的思路,在圖(2)中畫出△PMN,并直接寫出△RMN的面積 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】和中,,,,交于點,.
(1)如圖1,求證:;
(2)如圖2,若平分,求證:;
(3)若,交于,且為等腰三角形,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,小聰同學(xué)利用直尺和圓規(guī)完成了如下操作:
①作∠BAC的平分線AM交BC于點D;
②作邊AB的垂直平分線EF,EF與AM相交于點P;
③連接PB,PC.
請你觀察圖形解答下列問題:
(1)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;
(2)若∠ABC=70°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合)DE∥AB交AC于點F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點D與M重合時,求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點D不與M重合時,(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM
①求∠CAM的度數(shù);
②當(dāng)FH=, DM=4時,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,延長BC到D,∠ABC和∠ACD的平分線相交于P.
(1)若∠A=60°,則∠P= .
(2)請你用數(shù)學(xué)表達(dá)式歸納出∠P與∠A的關(guān)系: .
(3)請說明你的結(jié)論(2)正確的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABCD中,DH⊥AB于點H,CD的垂直平分線交CD于點E,交AB于點F,AB=6,DH=4,BF:FA=1:5.
(1)如圖2,作FG⊥AD于點G,交DH于點M,將△DGM沿DC方向平移,得到△CG′M′,連接M′B.
①求四邊形BHMM′的面積;
②直線EF上有一動點N,求△DNM周長的最小值.
(2)如圖3,延長CB交EF于點Q,過點Q作QK∥AB,過CD邊上的動點P作PK∥EF,并與QK交于點K,將△PKQ沿直線PQ翻折,使點K的對應(yīng)點K′恰好落在直線AB上,求線段CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山的高度,先在山腳的一點測得山頂的仰角為,再沿坡角為的山坡走米到點,又測得山頂的仰角是,則山高________.(帶根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D為EC中點.
(1)求∠CAE的度數(shù);
(2)求證:△ADE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的頂角為36°,則這個三角形就是黃金三角形。如圖,在△ABC中,BA=BC,D 在邊 CB 上,且 DB=DA=AC。
(1)如圖1,寫出圖中所有的黃金三角形,并證明;
(2)若 M為線段 BC上的點,過 M作直線MH⊥AD于 H,分別交直線 AB,AC與點N,E,如圖 2,試寫出線段 BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com