【題目】如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸正方向無滑動翻轉(zhuǎn),每次轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2019次,點B的落點依次為,則的坐標為( )
A.B.
C.D.
【答案】D
【解析】
連接AC,根據(jù)條件可以求出AC,可推出沒翻轉(zhuǎn)6次,圖形向右平移4,由于2019=336×6+3,因此點向右平移1344(即336×4)即可到達點,根據(jù)點的坐標就可以求出點的坐標.
連接AC,如圖所示,
∵四邊形OABC是菱形,
∴OA=AB=BC=OC,
∵,
∴△ABC是等邊三角形,
∴AC=AB,
∴AC=OA,
∵OA=1,
∴AC=1,
由規(guī)律可推出每翻轉(zhuǎn)6次,圖形向右平移4,
∵2019=336×6+3,
∴點向右平移1344(即336×4)即可到達點,
∵的坐標為(2,0),
∴的坐標為(2+1344,0),
∴的坐標為(1346,0).
故答案選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點D為BC的中點.
(1)求證:△ABC為等邊三角形;
(2)求DE的長;
(3)在線段AB的延長線上是否存在一點P,使△PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“趙爽弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形.如果小正方形的面積為4,大正方形的面積為100,直角三角形中較小的銳角為α,則tanα的值等于____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的角平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學(xué)們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立.你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入它所屬的集合內(nèi):將下列各數(shù)填入相應(yīng)的括號內(nèi):
,,,,,,….
正數(shù)集合:{ …};
負數(shù)集合:{ …};
有理數(shù)集合:{ …};
無理數(shù)數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位在疫情期間用元購進兩種口罩個,購買種口罩與購買種口罩的費用相同,且種口罩的單價是種口罩單價的倍.
求兩種口罩的單價各是多少元?
若計劃用不超過元的資金再次購進兩種口罩共個,已知兩種口罩的進價不變,求種口罩最多能購買多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,水流路線呈拋物線,把手端點A,出水口B和落水點C恰好在同一直線上,點A至出水管BD的距離為12cm,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2所示,現(xiàn)用高10.2cm的圓柱型水杯去接水,若水流所在拋物線經(jīng)過點D和杯子上底面中心E,則點E到洗手盆內(nèi)側(cè)的距離EH為_________cm.
(第16題圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com