【題目】拋物線C1:y=x2﹣1(﹣1≤x≤1)與x軸交于A、B兩點(diǎn),拋物線C2與拋物線C1關(guān)于點(diǎn)A中心對(duì)稱,拋物線C3與拋物線C1關(guān)于點(diǎn)B中心對(duì)稱.若直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個(gè)公共點(diǎn),則b的取值或取值范圍是_____.
【答案】b=-或- 或3
【解析】分析:根據(jù)對(duì)稱性先求拋物線C2與拋物線C3的解析式,再分兩種情況:
①在y軸右側(cè)時(shí),從直線y=﹣x+b與C3相切時(shí)到直線過(guò)點(diǎn)D時(shí),這些b值符合條件,計(jì)算出來(lái)即可;
②在y軸的左側(cè),當(dāng)y=﹣x+b與C1相切時(shí)和y=﹣x+b與C2相切時(shí),都與C2有C1、C2、C3組成的圖形恰好有2個(gè)公共點(diǎn),分別計(jì)算出b的值.
詳解:拋物線C1:y=x2﹣1(﹣1≤x≤1),頂點(diǎn)E(0,﹣1),當(dāng)y=0時(shí),x=±1,∴A(﹣1,0),B(1,0),當(dāng)拋物線C2與拋物線C1關(guān)于點(diǎn)A中心對(duì)稱,∴頂點(diǎn)E關(guān)于點(diǎn)A的對(duì)稱點(diǎn)E′(﹣2,1),∴拋物線C2的解析式為:y=﹣(x+2)2+1=﹣x2﹣4x﹣3,當(dāng)拋物線C3與拋物線C1關(guān)于點(diǎn)B中心對(duì)稱,∴頂點(diǎn)E關(guān)于點(diǎn)B的對(duì)稱點(diǎn)E′′(2,1),∴拋物線C3的解析式為:y=﹣(x﹣2)2+1=﹣x2+4x﹣3.分兩種情況討論:
①當(dāng)y=﹣x+b過(guò)D(3,0)時(shí),b=3,當(dāng)y=﹣x+b與C3相切時(shí),即與C3有一個(gè)公共點(diǎn),則,﹣x2+4x﹣3=﹣x+b,x2﹣5x+b+3=0,△=25﹣4(b+3)=0,b=,∴當(dāng)3≤b<時(shí),直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個(gè)公共點(diǎn);
②當(dāng)y=﹣x+b與C1相切時(shí),即與C1有一個(gè)公共點(diǎn),則,x2﹣1=﹣x+b,x2+x﹣1﹣b=0,△=1﹣4(﹣1﹣b)=0,b=﹣,當(dāng)y=﹣x+b與C2相切時(shí),即與C2有一個(gè)公共點(diǎn),則,﹣x2﹣4x﹣3=﹣x+b,﹣x2﹣3x﹣3﹣b=0,△=9﹣4×(﹣1)×(﹣3﹣b)=0,b=﹣,∴當(dāng)b=﹣或﹣時(shí),直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個(gè)公共點(diǎn).
綜上所述:當(dāng)b=﹣或﹣或3≤b<時(shí),直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都為1,四邊形ABCD的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)求四邊形ABCD的面積;
(2)∠BCD是直角嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∥,點(diǎn)、分別是、 上的兩點(diǎn),點(diǎn)在、之間,連接、.
(1)如圖①,若,求的度數(shù);
(2)如圖②,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù);
(3)如圖③,若點(diǎn)是上方一點(diǎn),連接、,且的延長(zhǎng)線平分,平分,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上, 老師要求同學(xué)們利用三角板畫(huà)兩條平行線.老師說(shuō)苗苗和小華兩位同學(xué)畫(huà)法都是正確的,兩位同學(xué)的畫(huà)法如下:
苗苗的畫(huà)法:
①將含30°角的三角尺的最長(zhǎng)邊與直線a重合,另一塊三角尺最長(zhǎng)邊與含30°角的三角尺的最短邊緊貼;
②將含30°角的三角尺沿貼合邊平移一段距離,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.
小華的畫(huà)法:
①將含30°角三角尺的最長(zhǎng)邊與直線a重合,用虛線做出一條最短邊所在直線;
②再次將含30°角三角尺的最短邊與虛線重合,畫(huà)出最長(zhǎng)邊所在直線b,則b//a.
請(qǐng)?jiān)诿缑绾托∪A兩位同學(xué)畫(huà)平行線的方法中選出你喜歡的一種,并寫(xiě)出這種畫(huà)圖的依據(jù).
答:我喜歡__________同學(xué)的畫(huà)法,畫(huà)圖的依據(jù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù)y= 的圖象相交于C,D兩點(diǎn),分別過(guò)C,D兩點(diǎn)作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列五個(gè)結(jié)論:
①△CEF與△DEF的面積相等; ②△AOB∽△FOE;
③△DCE≌△CDF;④AC=BD; ⑤tan∠BAO=a
其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)
因式分解:.
解:將“”看成整體,令,則原式.
再將“”還原,原式.
上述解題用到的是“整體思想”,整體思想是數(shù)學(xué)解題中常用的一種思想方法.
(問(wèn)題解決)
(1)因式分解:;
(2)因式分解:;
(3)證明:若為正整數(shù),則代數(shù)式的值一定是某個(gè)整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.
(1)求證:AB∥CD;(2)試探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,正整數(shù)的和1+3+5+…+(2n﹣1)=n2,若把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個(gè)數(shù)(從左到右數(shù)),如A8=(2,3),則A2018=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)點(diǎn)B(0,2)的直線y=kx+b與x軸交于點(diǎn)C,與正比例函數(shù)y=ax的圖象交于點(diǎn)A(﹣1,3)
(1)求直線AB的函數(shù)的表達(dá)式;
(2)直接寫(xiě)出不等式(kx+b)﹣ax<0的解集;
(3)求△AOC的面積;
(4)點(diǎn)P是直線AB上的一點(diǎn),且知△OCP是等腰三角形,寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com