如圖,直線y=
3
4
x+3
與x軸、y軸分別交于A、B兩點,已知點C(0,-1)、D(0,k),且0<k<3,以點D為圓心、DC為半徑作⊙D,當⊙D與直線AB相切時,k的值為( 。
A.
5
9
B.
2
3
C.
7
9
D.
8
9

如圖所示:
y=
3
4
x+3
中,令x=0,得y=3;令y=0,
得x=-4,
故A,B兩點的坐標分別為A(-4,0),B(0,3).
若動圓的圓心在E處時與直線l相切,設切點為E,
如圖所示,連接ED,則ED⊥AB.
可知
AD2-DE2=AE2
AE=AB-BE
BE2=BD2-DE2

代入數(shù)據(jù)得
k=
7
9

故選C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的切線,A、B為切點,AC是⊙O的直徑,∠P=50°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:∠MAN=60°,點B在射線AM上,AB=4(如圖).P為直線AN上一動點,以BP為邊作等邊三角形BPQ(點B,P,Q按順時針排列),O是△BPQ的外心.
(1)當點P在射線AN上運動時,求證:點O在∠MAN的平分線上;
(2)當點P在射線AN上運動(點P與點A不重合)時,AO與BP交于點C,設AP=x,AC•AO=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)若點D在射線AN上,AD=2,圓I為△ABD的內(nèi)切圓.當△BPQ的邊BP或BQ與圓I相切時,請直接寫出點A與點O的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分線BD交AC于點D,點E是線段AB上的一點,以BE為直徑的圓O過點D.
(1)求證:AC是圓O的切線;
(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點P是⊙O外一點,PA切⊙O于點A,∠O=60°,則∠P度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C是⊙O上一點,且AC平分∠PAE,過點C作CD⊥PA,垂足為點D.
(1)求證:CD與⊙O相切;
(2)若tan∠ACD=
1
2
,⊙O的直徑為10,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x軸上.連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求線段BC的長;
(2)求直線AC的關(guān)系式;
(3)當點B在x軸上移動時,是否存在點B,使△BOP相似于△AOD?若存在,求出符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,兩個半圓中,長為4的弦,AB與直徑CD平行且與小半圓相切,那么圖中陰影部分的面積等于多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB為⊙O的直徑,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)關(guān)系式,并求當四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案