【題目】一家商店經(jīng)營一種玩具,進價為每件50元,調(diào)查市場發(fā)現(xiàn)日銷售量y(件)是關(guān)于售價x(元/件)的一次函數(shù),相關(guān)數(shù)據(jù)如表,商店每天的總支出是600元.

售價(元/件)

50

55

60

65

日銷售量y/

80

70

60

50

1)直接寫出yx之間的函數(shù)關(guān)系式.(不要求寫出自變量x的取值范圍)

2)商店在“五一”這天盡可能優(yōu)惠顧客,正好收支平衡(收入=支出),問當(dāng)天玩具的售價為多少元/件.

3)商店最早需要多少天,純利可以突破萬元,玩具的售價應(yīng)定為多少元/件?(每天純利=每天的銷售額﹣成本﹣每天的支出)

【答案】1y2x+180;(2)當(dāng)天玩具的售價為60/件;(3)商店最早需要50天,純利可以突破萬元,玩具的售價應(yīng)定為70/件.

【解析】

1)設(shè)yx之間的函數(shù)關(guān)系式為ykx+b,把(5080)和(60,60)代入即可得到結(jié)論;

2)根據(jù)收入=支出列方程求解即可得到結(jié)論;

3)設(shè)每天純利為W元,由題意得,W=(x50)(﹣2x+180)﹣600=﹣2x702+200,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1)設(shè)yx之間的函數(shù)關(guān)系式為ykx+b,

把(50,80)和(60,60)代入上式得,

,解得:

yx之間的函數(shù)關(guān)系式為:y2x+180;

2)根據(jù)題意得,(x50)(﹣2x+180)=600,

解得:x160,x280

∵盡可能優(yōu)惠顧客,∴x60

答:當(dāng)天玩具的售價為60/件;

3)設(shè)每天純利為W元,由題意得,

W=(x50)(﹣2x+180)﹣600=﹣2x702+200,

即每件玩具的售價應(yīng)定為70元時,商店每天的純利最大,最大純利為200元,

10000÷20050(天),

∴商店最早需要50天,純利可以突破萬元,玩具的售價應(yīng)定為70/件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E

1)求證:AC平分∠DAB

2)若AB6,BOE的中點,CFAB,垂足為點F,求CF的長;

3)如圖②,連接ODAC于點G,若,求cosE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是線段AB上的一點,AB=6cm,OAB外一定點.連接OP,將OP繞點O順時針旋轉(zhuǎn)120°OQ,連接PQ,AQ

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段APPQ,AQ的長度之間的關(guān)系進行了探究.

下面是小明的探究過程,請補充完整:

1)對于點PAB上的不同位置,畫圖、測量,得到了線段AP,PQ,AQ的長度(單位:cm)的幾組值,如下表:

AP,PQ,AQ的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AQ=PQ時,線段AP的長度約為________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的

5個主題進行了抽樣調(diào)查(每位同學(xué)只選取最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完

整的統(tǒng)計圖,根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中“進取”部分扇形的圓心角是   度;

(4)若該校學(xué)生人數(shù)為800人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中“感恩”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的頂點為D,與x軸交點A,B的橫坐標(biāo)分別為﹣13,與y軸負(fù)半軸交于點C.下面五個結(jié)論:

①2a+b0

②4a+2b+c0;

對任意實數(shù)x,ax2+bxa+b;

只有當(dāng)a時,△ABD是等腰直角三角形;

使△ABC為等腰三角形的a值可以有3個.

其中正確的結(jié)論有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C、D在O上,點E在O外,EAC=B=60°.

(1)求ADC的度數(shù);

(2)求證:AE是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為(  )

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l與直線,直線分別交于點A,B,直線與直線交于點

1)求直線軸的交點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為

當(dāng)時,結(jié)合函數(shù)圖象,求區(qū)域內(nèi)的整點個數(shù);

若區(qū)域內(nèi)沒有整點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形OABC的直角頂點是坐標(biāo)原點,邊OA,OC分別在x軸,y軸的正半軸上.OABC,DBC上一點,BD=OA=AB=3,∠OAB=45°,E,F分別是線段OAAB上的兩個動點,且始終保持∠DEF=45°.設(shè)OE=xAF=y,則yx的函數(shù)關(guān)系式為_____

查看答案和解析>>

同步練習(xí)冊答案