【題目】某電腦公司銷售部為了定制下個月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì)I繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )

A. 19,20,14 B. 18.4,20,20 C. 19, 20, 20 D. 18.4,25,20

【答案】B

【解析】根據(jù)題意得:

銷售20臺的人數(shù)是:20×40%=8(),

銷售30臺的人數(shù)是:20×15%=3(),

銷售12臺的人數(shù)是:20×20%=4(),

銷售14臺的人數(shù)是:20×25%=5(),

則這20位銷售人員本月銷售量的平均數(shù)是

(20×8+30×3+12×4+14×5) ÷20=18.4();

把這些數(shù)從小到大排列,最中間的數(shù)是第10、11個數(shù)的平均數(shù),

則中位數(shù)是20+202=20();

∵銷售20臺的人數(shù)最多,

∴這組數(shù)據(jù)的眾數(shù)是20.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求值

(1)先化簡再求值:5x2-(x-2)(3x+1)-2(x+1)(x-5),其中x=-1

(2)已知a+b=4,ab=2,求a3b+2a2b2+ab3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖甲,請把它們分割后拼接成一個新的正方形.要求:畫出分割線并在正方形網(wǎng)格圖(圖中的每一個小正方形的邊長均為1)中用實(shí)線畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得x= 由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長.于是,畫出如圖乙所示的分割線,拼出如圖丙所示的新的正方形.
請你參考小東同學(xué)的做法,解決如下問題:
現(xiàn)有10個邊長為1的小正方形,排列形式如圖丁,請把它們分割后拼接成一個新的正方形.要求:在圖丁中畫出分割線,并在圖戊的正方形網(wǎng)格圖(圖中的每一個小正方形的邊長均為1)中用實(shí)線畫出拼接成的新正方形.
說明:直接畫出圖形,不要求寫分析過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彭山的枇杷大又甜,在今年5月18日“彭山枇杷節(jié)”期間,從山上5棵枇杷樹上采摘到了200千克枇杷,請估計(jì)彭山近600棵枇杷樹今年一共收獲了枇杷千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,有題譯文如下:今有門,不知其高寬;有竿,不知其長短.橫放,竿比門寬長出4尺;豎放,竿比門高長出2尺;斜放,竿與門對角線長恰好相等.問門高、寬和對角線的長各是多少?設(shè)門對角線的長為x尺,下列方程符合題意的是(

A.(x2)2(x4)2x2B.(x2)2(x4)2x2

C.x2(x4)2(x4)2D.(x2)2x2(x4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AE=AB,直線DE交BC于點(diǎn)F,則∠BEF=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,命題p:“B≠60°“,命題q:“△ABC的三個內(nèi)角A,B,C不成等差數(shù)列“,那么p是q的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長平行四邊形ABCD的邊DC到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.

(1)求證:BF=CF;

(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案