【題目】在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點B,拋物線y=ax2+bx+c(a<0)經(jīng)過點A、B.
(1)求a、b滿足的關(guān)系式及c的值.
(2)當(dāng)x<0時,若y=ax2+bx+c(a<0)的函數(shù)值隨x的增大而增大,求a的取值范圍.
(3)如圖,當(dāng)a=﹣1時,在拋物線上是否存在點P,使△PAB的面積為1?若存在,請求出符合條件的所有點P的坐標;若不存在,請說明理由.
【答案】(1)b=2a+1,c=2;(2)≤a<0;(3)存在,點P(﹣1,2)或(﹣1+,1)或(﹣1﹣,﹣),理由見解析
【解析】
(1)求出點A、B的坐標,將其代入y=ax2+bx+c即可求解;
(2)當(dāng)時,若y=ax2+bx+c()的函數(shù)值隨x的增大而增大,則函數(shù)對稱軸x,而,即可求解;
(3)過點P作直線l∥AB,作PQ∥y軸交BA于點Q,作PH⊥AB于點H,S△PAB=×AB×PH=×2×PQ×=1,則|yP﹣yQ|=1,即可求解.
(1)y=x+2,令x=0,則y=2,令y=0,則x=﹣2,
故點A、B的坐標分別為(﹣2,0)、(0,2),則c=2,
則函數(shù)表達式為:y=ax2+bx+2,
將點A坐標代入上式并整理得:b=2a+1;
(2)當(dāng)x<0時,若y=ax2+bx+c(a<0)的函數(shù)值隨x的增大而增大,
則函數(shù)對稱軸x=≥0,而b=2a+1,
即:≥0,解得:,
故a的取值范圍為:≤a<0;
(3)當(dāng)a=﹣1時,二次函數(shù)表達式為:y=﹣x2﹣x+2,
過點P作直線l∥AB,作PQ∥y軸交BA于點Q,作PH⊥AB于點H,
∵OA=OB,∴∠BAO=∠PQH=45°,
S△PAB=×AB×PH=×2×PQ×=1,
則yP﹣yQ=1,
在直線AB下方作直線m,使直線m和l與直線AB等距離,
則直線m與拋物線兩個交點坐標,分別與點AB組成的三角形的面積也為1,
故:|yP﹣yQ|=1,
設(shè)點P(x,﹣x2﹣x+2),則點Q(x,x+2),
即:﹣x2﹣x+2﹣x﹣2=±1,
解得:x=﹣1或,
故點P(﹣1,2)或(﹣1+,1)或(﹣1﹣,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形紙片ABCD邊長為2,折疊∠B和∠D,使兩個直角的頂點重合于對角線BD上的一點P,EF、GH分別是折痕(圖2),設(shè)AE=x(0<x<2),給出下列判斷:①x=時,EF+AB>AC;②六邊形AEFCHG周長的值為定值;③六邊形AEFCHG面積為定值,其中正確的是( )
A.①②B.①③C.②D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知∠BAC=36°,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點A1,A2,A3,…,An在射線AC上,點B1,B2,B3,…,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F是CD上一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則以下結(jié)論中:①F為CD的中點;②3AM=2DE;③tan∠EAF=;④;⑤△PMN∽△DPE,正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標準,旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為(1,﹣4),且過點(﹣2,5).
(1)求拋物線的解析式;
(2)根據(jù)函數(shù)圖象,直接寫出y<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點E是CD的中點,連接AE,將△ADE沿AE折疊至△AHE,連接BH,延長AE,BH交于點F;BF,CD交于點G,則FG=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。
(1)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號)
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?
(參考數(shù)據(jù):=1.41,=1.73,=2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,學(xué)校德育處隨機抽取了其中200名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
成績x(分)分數(shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問題:
(1)m=________;n=________;
(2)補全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在________分數(shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com