【題目】如圖,在中,,點(diǎn)OBC上一點(diǎn),以點(diǎn)O圓心,OC為半徑的圓交BC于點(diǎn)D,恰好與AB相切于點(diǎn)E

求證:AO的平分線;

,求AC的長.

【答案】(1)證明見解析;(2)12cm.

【解析】

(1)由∠ACB=90°,且OC為圓O的半徑,判斷得到AC與圓O相切,又AB與圓O相切,根據(jù)切線長定理得到AO為∠BAC的平分線,且AE=AC;

(2)由BE為圓O的切線,BC為圓O的割線,利用切割線定理列出關(guān)系式,將BD及BE的長代入,求出BC的長,用BC-BD求出直徑CD的長,進(jìn)而確定出圓O的半徑,由OD+BD求出OB的長,連接OE,由切線的性質(zhì)得到OE垂直于BE,在直角三角形OEB中,利用銳角三角函數(shù)定義求出sinB的值,同時由OB及OE的長,利用勾股定理求出BE的長,由∠ACB=90°,OC為圓O的半徑,可得出AC為圓O的切線,由AE與AC都為圓的切線,根據(jù)切線長定理得到AE=AC,設(shè)AC=AE=xcm,由AE+EB表示出AB,再由BC及AC,在直角三角形ABC中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為AC的長.

,OC為圓O的半徑,

為圓O的切線,又AB與圓O相切,E為切點(diǎn),

,AO平分;

為圓O的切線,BC為圓O的割線,

,又,,

,即,

連接OE,由BE為圓O的切線,得到,

在直角三角形BEO中,,,

,

在直角三角形ABC中,設(shè),則,

根據(jù)勾股定理得:,即,

解得:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對A點(diǎn)做如下移動:第1次向左移動3個單位長度至B點(diǎn),第2次從B點(diǎn)向右移動6個單位長度至C點(diǎn),第3次從C點(diǎn)向左移動9個單位長度至D點(diǎn),第4次從D點(diǎn)向右移動12個單位長度至E點(diǎn),,依此類推.這樣第_____次移動到的點(diǎn)到原點(diǎn)的距離為2018.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,ABDC,B=55°,1=85°,2=40°

(1)求∠D的度數(shù);

(2)求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為3,點(diǎn)E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點(diǎn)B,D恰好都落在點(diǎn)G處,已知BE=1,則EF的長為(
A.1.5
B.2.5
C.2.25
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是任意四邊形,AC與BD交于點(diǎn)O.試說明:AC+BD> (AB+BC+CD+DA).

解:在△OAB中有OA+OB>AB,

在△OAD中有______________

在△ODC中有______________,

在△________中有______________,

∴OA+OB+OA+OD+OD+OC+OB+OC>AB+AD+CD+BC,

________________________

∴AC+BD> (AB+BC+CD+DA).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線ACBD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。

A. OA=OCADBC B. ABC=ADC,ADBC

C. AB=DCAD=BC D. ABD=ADB,BAO=DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.

(1)求拋物線的解析式;
(2)線段AB上有一動點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正確的結(jié)論有( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

同步練習(xí)冊答案