(1)如圖1,直線(xiàn)MN與⊙O相交,且與⊙O的直徑AB垂直,垂足為P,過(guò)點(diǎn)P的直線(xiàn)與⊙O交于C、D兩點(diǎn),直線(xiàn)AC交MN于點(diǎn)E,直線(xiàn)AD交MN于點(diǎn)F.求證:PC•PD=PE•PF.
(2)如圖2,若直線(xiàn)MN與⊙O相離.(1)中的其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
(3)在圖3中,直線(xiàn)MN與⊙O相離,且與⊙O的直徑AB垂直,垂足為P.
①請(qǐng)按要求畫(huà)出圖形:畫(huà)⊙O的割線(xiàn)PCD(PC<PD),直線(xiàn)BC與MN交于E,直線(xiàn)BD與MN交于F.
②能否仍能得到(1)中的結(jié)論?請(qǐng)說(shuō)明理由.

【答案】分析:(1)本題要證的實(shí)際是△ECP與△DFP相似.已知對(duì)頂角∠CPE=∠DPF,要想證相似就要再找出一組相等的對(duì)應(yīng)角;
連接BD.根據(jù)圓周角定理可得∠BAC=∠CDB,因此根據(jù)等角的余角相等,即可得出∠PDF=∠DEP;由此可證出△PDF∽△PEC,根據(jù)相似三角形對(duì)應(yīng)線(xiàn)段成比例,即可得出PC•PD=PE•PF.
(2)還成立,證法與(1)大致相同,只不過(guò)證三角形相似時(shí),已知的不是對(duì)頂角,而是一個(gè)公共角.
(3)依然成立,還是通過(guò)證△ECP與△DFP相似,來(lái)求解.這兩個(gè)三角形中已知了一個(gè)公共角,按(1)的思路,可連接AC,那么∠D=∠A,而∠A和∠PEB是一組對(duì)頂角的余角,因此∠A=∠PEB=∠D,由此可證得兩三角形相似,即可證得(1)的結(jié)論.
解答:(1)證明:連接BD
∵AB是⊙O直徑,
∴∠ADB=90°.
∴∠ADC+∠BDC=90°.
∵M(jìn)N⊥AB,
∴∠AEP+∠BAC=90°.
∵∠BAC=∠BDC,
∴∠ADC=∠AEP.
∵∠DPF=∠EPC,
∴△PDF∽△PEC.

即PC•PD=PE•PF.

(2)解:結(jié)論仍然成立.
證明:連接BD.
∵AB是⊙O直徑,
∴∠ADB=90°.
∴∠ABD+∠BAD=90°.
∵∠ACD=∠PCE,∠ABD=∠ACD,
∴∠PCE+∠BAD=90°.
∵M(jìn)N⊥AB,
∴∠PFA+∠BAD=90°.
∴∠PCE=∠PFA.
∵∠EPC=∠FPD,
∴△PCE∽△PFD.

∴PC•PD=PE•PF.

(3)解:結(jié)論仍然成立.
證明:連接AC.
∵AB是⊙O直徑,
∴∠ACB=90°,
∴∠A+∠ABC=90°.
∵∠ABC=∠EBP,
∴∠A+∠EBP=90°.
∵M(jìn)N⊥AB,
∴∠PEB+∠EBP=90°.
∴∠A=∠PEB.
∵∠A=∠D,
∴∠D=∠PEB.
∵∠DPF=∠EPC,
∴△DPF∽△EPC.

∴PC•PD=PE•PF.
點(diǎn)評(píng):本題主要考查了圓周角定理,相似三角形的判定和性質(zhì)等知識(shí)點(diǎn);根據(jù)圓周角定理得出的角相等,來(lái)證得三角形相似是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),直線(xiàn)y=-
14
x+3經(jīng)過(guò)頂點(diǎn)B,與y軸交于頂點(diǎn)C,AB∥OC.
(1)求頂點(diǎn)B的坐標(biāo);
(2)如圖2,直線(xiàn)l經(jīng)過(guò)點(diǎn)C,與直線(xiàn)AB交于點(diǎn)M,點(diǎn)O?為點(diǎn)O關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),連接CO?,并延長(zhǎng)交直線(xiàn)AB于第一象限的點(diǎn)D,當(dāng)CD=5時(shí),求直線(xiàn)l的解析式;
(3)在(2)的條件下,點(diǎn)P在直線(xiàn)l上運(yùn)動(dòng),點(diǎn)Q在直線(xiàn)OD上運(yùn)動(dòng),以P、Q、B、C為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,該直線(xiàn)是某個(gè)一次函數(shù)的圖象,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,在直線(xiàn)l上取A,B兩點(diǎn),使AB=10厘米,若在l上再取一點(diǎn)C,使AC=2厘米,M,N分別是AB,AC中點(diǎn).求MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩直線(xiàn)y1=ax+3與y2=
14
x相交于P點(diǎn),當(dāng)y2<y1≤3時(shí),x的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南崗區(qū)一模)如圖1,直線(xiàn)y=-kx+6k(k>0)與x軸、y軸分別相交于點(diǎn)A、B,且△AOB的面積是24.
(1)求直線(xiàn)AB的解析式;
(2)如圖2,點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿折線(xiàn)OA-AB運(yùn)動(dòng);同時(shí)點(diǎn)E從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿y軸正半軸運(yùn)動(dòng),過(guò)點(diǎn)E作與x軸平行的直線(xiàn)l,與線(xiàn)段AB相交于點(diǎn)F,當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),點(diǎn)P、E均停止運(yùn)動(dòng).連接PE、PF,設(shè)△PEF的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫(xiě)出自變量t的取值范圍;
(3)在(2)的條件下,過(guò)P作x軸的垂線(xiàn),與直線(xiàn)l相交于點(diǎn)M,連接AM,當(dāng)tan∠MAB=
12
時(shí),求t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案