【題目】如圖,一次函數y=x+m的圖象與反比例函數y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).
(1)求m及k的值;
(2)求點B的坐標及△AOB的面積;
(3)觀察圖象直接寫出使反比例函數值小于一次函數值的自變量x取值范圍.
【答案】(1)m=﹣1,k=2;(2)B點坐標為(﹣1,﹣2),△AOB的面積S=;(3)x>2或﹣1<x<0.
【解析】
(1)把A點的坐標代入函數解析式,即可求出答案;
(2)解由兩函數解析式組成的方程組,求出方程組的解,即可得出B點的坐標,求出C點的坐標,再根據三角形面積公式求即可;
(3)根據A、B點的坐標和圖象得出答案即可.
解:(1)∵一次函數y=x+m的圖象與反比例函數y=的圖象交于A,B兩點,點A的坐標為(2,1).
∴把A的坐標代入函數解析式得:1=2+m,k=2×1,
解得:m=﹣1,k=2;
(2)兩函數解析式為y=x﹣1,y=,
解方程組得:,,
∵點A的坐標為(2,1),
∴B點坐標為(﹣1,﹣2),
y=x﹣1,
當y=0時,0=x﹣1,
解得:x=1,
即點C的坐標為(1,0),
OC=1,
所以△AOB的面積S=S△AOC+S△BOC==;
(3)反比例函數值小于一次函數值的自變量x取值范圍是x>2或﹣1<x<0.
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數關系如圖所示,則下列結論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當甲、乙兩車相距50千米時,t=或.其中正確的是________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,足球場上守門員徐楊在O處拋出一高球,球從離地面1m處的點A飛出,其飛行的最大高度是4m,最高處距離飛出點的水平距離是6m,且飛行的路線是拋物線一部分.以點O為坐標原點,豎直向上的方向為y軸的正方向,球飛行的水平方向為x軸的正方向建立坐標系,并把球看成一個點.(參考數據:4≈7)
(1)求足球的飛行高度y(m)與飛行水平距離x(m)之間的函數關系式;
(2)在沒有隊員干擾的情況下,球飛行的最遠水平距離是多少?(精確到個位)
(3)若對方一名1.7m的隊員在距落點C 3m的點H處,躍起0.3m進行攔截,則這名隊員能攔到球嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖一,AB為⊙O直徑,PB為⊙O切線,點C在⊙O上,弦AC∥OP.
(1)求證:PC為⊙O的切線.
(2)如圖二,OP交⊙O于D,DA交BC于G,作DE⊥AB于E,交BC于F,若CG=3,DF=,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,點D是線段BC上一動點,連接AD,以AD為邊作△ADE∽△ABC,點N是AC的中點,連接NE,當線段NE最短時,線段CD的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點D,BC=10cm,AD=8cm,E點F點分別為AB,AC的中點.
(1)求證:四邊形AEDF是菱形;
(2)求菱形AEDF的面積;
(3)若H從F點出發(fā),在線段FE上以每秒2cm的速度向E點運動,點P從B點出發(fā),在線段BC上以每秒3cm的速度向C點運動,問當t為何值時,四邊形BPHE是平行四邊形?當t取何值時,四邊形PCFH是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數y=kx+b的圖象經過該二次函數圖象上的點A(﹣1,0)及點B.
(1)求二次函數與一次函數的解析式;
(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發(fā)現,單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com