【題目】已知,如圖1,拋物線軸交于點(diǎn),與軸交于點(diǎn),且,

1)求拋物線解析式;

2)如圖2,點(diǎn)是拋物線第一象限上一點(diǎn),連接軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段長(zhǎng)為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過點(diǎn)作直線軸,在上取一點(diǎn)(點(diǎn)在第二象限),連接,使,連接并延長(zhǎng)軸于點(diǎn),過點(diǎn)于點(diǎn),連接、.若時(shí),求值.

【答案】1;(2;(3

【解析】

1)先令代入拋物線的解析式中求得與軸交點(diǎn)的坐標(biāo),根據(jù)可得的坐標(biāo),從而得的坐標(biāo),利用待定系數(shù)法求拋物線解析式;

2)如圖2,設(shè),證明,列比例式可得結(jié)論;

3)如圖3,作輔助線,構(gòu)建全等三角形和等腰直角三角形,先得,則是等腰直角三角形,得,由,得,求得,證明是等腰直角三角形,及,則,代入可得的值,并根據(jù)(2)中的點(diǎn)只在第一象限進(jìn)行取舍.

1)如圖1,當(dāng)時(shí),

,

代入拋物線中得:

解得:

∴拋物線的解析式為;

2)如圖2,設(shè)

軸于

;

3)如圖3,連接,延長(zhǎng)軸于

由(2)知:,

是等腰直角三角形

,

,,

是等腰直角三角形

,

,

,不符合題意,舍去

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、為河對(duì)岸的兩幢建筑物,某學(xué)習(xí)小組為了測(cè)出河寬(沿岸是平行的),先在岸邊的點(diǎn)處測(cè)得,再沿著河岸前進(jìn)10米后到達(dá)點(diǎn),在點(diǎn)處測(cè)得

1)求河寬;

2)該小組發(fā)現(xiàn)此時(shí)還可求得、之間的距離,請(qǐng)求出的長(zhǎng).(精確到0.1米)(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了了解我市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動(dòng).

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

運(yùn)動(dòng)形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請(qǐng)你根據(jù)以上信息,回答下列問題:

1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

2)統(tǒng)計(jì)圖中,A類所對(duì)應(yīng)的扇形圓心角的度數(shù)為   ;

3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運(yùn)動(dòng)方式是   ,不運(yùn)動(dòng)的市民所占的百分比是   ;

4)鄭州市碧沙崗公園是附近市民喜愛的運(yùn)動(dòng)場(chǎng)所之一,每晚都有暴走團(tuán)活動(dòng),若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗暴走團(tuán)的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EBC邊上的一點(diǎn),且AEBD,垂足為點(diǎn)F,∠DAE2BAE

1)求證:BFDF13;

2)若四邊形EFDC的面積為11,求CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示,下列敘述正確的是(

A. 甲乙兩地相距1200千米

B. 快車的速度是80千米小時(shí)

C. 慢車的速度是60千米小時(shí)

D. 快車到達(dá)甲地時(shí),慢車距離乙地100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了、、四個(gè)等級(jí),并繪制了如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)本次評(píng)估隨機(jī)抽取了多少家商業(yè)連鎖店?

(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);

(3)從兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是等級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演經(jīng)典誦讀民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,BDABC的角平分線,若AC= 12 ,則在ABDAB邊上的高為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)yx2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣30),點(diǎn)B的坐標(biāo)為(4,0),連接ACBC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ

1)填空:b ,c

2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,△APQ可能是直角三角形嗎?請(qǐng)說明理由;

3)點(diǎn)M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點(diǎn)M的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案