【題目】已知,如圖1,拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),且,.
(1)求拋物線解析式;
(2)如圖2,點(diǎn)是拋物線第一象限上一點(diǎn),連接交軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段長(zhǎng)為,求與之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點(diǎn)作直線軸,在上取一點(diǎn)(點(diǎn)在第二象限),連接,使,連接并延長(zhǎng)交軸于點(diǎn),過點(diǎn)作于點(diǎn),連接、、.若時(shí),求值.
【答案】(1);(2);(3)
【解析】
(1)先令代入拋物線的解析式中求得與軸交點(diǎn)的坐標(biāo),根據(jù)可得的坐標(biāo),從而得的坐標(biāo),利用待定系數(shù)法求拋物線解析式;
(2)如圖2,設(shè),證明,列比例式可得結(jié)論;
(3)如圖3,作輔助線,構(gòu)建全等三角形和等腰直角三角形,先得,則是等腰直角三角形,得,由,得,求得,證明是等腰直角三角形,及,則,代入可得的值,并根據(jù)(2)中的點(diǎn)只在第一象限進(jìn)行取舍.
(1)如圖1,當(dāng)時(shí),
∴
∴
∵
∴
∴,
把,代入拋物線中得:
解得:
∴拋物線的解析式為;
(2)如圖2,設(shè)
過作軸于
∵
∴
∴
∴
∴;
(3)如圖3,連接,延長(zhǎng)交軸于
由(2)知:,
∴
∴
∴是等腰直角三角形
∴,
∵
∴
∴,,
∵
∴
∵
∴
∵
∴是等腰直角三角形
∴,
∴
∴
∴
∴
∵,
∴
∴
∴
,
∵
∴,不符合題意,舍去
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、為河對(duì)岸的兩幢建筑物,某學(xué)習(xí)小組為了測(cè)出河寬(沿岸是平行的),先在岸邊的點(diǎn)處測(cè)得,再沿著河岸前進(jìn)10米后到達(dá)點(diǎn),在點(diǎn)處測(cè)得,.
(1)求河寬;
(2)該小組發(fā)現(xiàn)此時(shí)還可求得、之間的距離,請(qǐng)求出的長(zhǎng).(精確到0.1米)(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了了解我市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動(dòng).
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
運(yùn)動(dòng)形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請(qǐng)你根據(jù)以上信息,回答下列問題:
(1)接受問卷調(diào)查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計(jì)圖中,A類所對(duì)應(yīng)的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運(yùn)動(dòng)方式是 ,不運(yùn)動(dòng)的市民所占的百分比是 ;
(4)鄭州市碧沙崗公園是附近市民喜愛的運(yùn)動(dòng)場(chǎng)所之一,每晚都有“暴走團(tuán)”活動(dòng),若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗“暴走團(tuán)”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),且AE⊥BD,垂足為點(diǎn)F,∠DAE=2∠BAE.
(1)求證:BF:DF=1:3;
(2)若四邊形EFDC的面積為11,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示,下列敘述正確的是( )
A. 甲乙兩地相距1200千米
B. 快車的速度是80千米∕小時(shí)
C. 慢車的速度是60千米∕小時(shí)
D. 快車到達(dá)甲地時(shí),慢車距離乙地100千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了、、、四個(gè)等級(jí),并繪制了如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)本次評(píng)估隨機(jī)抽取了多少家商業(yè)連鎖店?
(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從、兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是等級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項(xiàng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,BD為△ABC的角平分線,若AC= 12 ,則在△ABD中AB邊上的高為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,△APQ可能是直角三角形嗎?請(qǐng)說明理由;
(3)點(diǎn)M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點(diǎn)M的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com