【題目】(定義)數學課上,陳老師對我們說,如果1條線段將一個三角形分成2個等腰三角形,那么這1條線段就稱為這個三角形的“好線”,如果2條線段將一個三角形分成3個等腰三角形,那么這2條線段就稱為這個三角形的“好好線”.
(理解)如圖①,在△ABC中,∠A=36°,∠C=72°,請你在這個三角形中畫出它的“好線”,并標出等腰三角形頂角的度數.
如圖②,已知△ABC是一個頂角為45°的等腰三角形,請你在這個三角形中畫出它的“好好線”,并標出所分得的等腰三角形底角的度數.
(應用)
(1)在△ABC中,已知一個內角為42°,若它只有“好線”,請你寫出這個三角形最大內角的所有可能值______;
(2)在△ABC中,∠C=27°,AD和DE分別是△ABC的“好好線”,點D在BC邊上,點E在AB邊上,且AD=DC,BE=DE,請你根據題意畫出示意圖,并求∠B的度數.
【答案】【定義】見解析;【應用】(1)84°或103.5°或124°或117°或126°;(2)畫圖見解析;∠B=42°或18°.
【解析】
【定義】
如圖①,如圖②所示,根據題意畫出圖形即可;
【應用】(1)①如圖③當∠B=42°,AD為“好線”,②如圖④當∠B=42°,AD為“好線”,③如圖⑤當∠ABC=42°時,BD為“好線”,④如圖⑥,當∠B=42°時,CD為“好線”,⑤如圖⑦,當∠B=42°時,CD為“好線”,根據等腰三角形的性質即可得到結論;
(2)設∠B=x°,①當AD=DE時,如圖1(a),②當AD=AE時,如圖1(b),③當EA=DE時,根據等腰三角形的性質列方程即可得到結論.
解:(定義)如圖①,如圖②所示,
(應用)
(1)①如圖③當∠B=42°,AD為“好線”,
則AD=AD=BD,故這個三角形最大內角是∠C=84°;
②如圖④當∠B=42°,AD為“好線”,
則AB=AD,AD=CD,這個三角形最大內角是∠BAC=103.5°;
③如圖⑤當∠ABC=42°時,BD為“好線”,
則AD=BD,CD=BC,故這個三角形最大內角是∠C=124°,
④如圖⑥,當∠B=42°時,CD為“好線”,
則AD=CD=BC,故這個三角形最大內角是∠ACB=117°,
⑤如圖⑦,當∠B=42°時,CD為“好線”,
則AD=AC,CD=BD,故這個三角形最大內角是∠ACB=126°,
綜上所述,這個三角形最大內角的所有可能值是84°或103.5°或124°或117°或126°,
故答案為:84°或103.5°或124°或117°或126°;
(2)設∠B=x°,
①當AD=DE時,如圖1(a),
∵AD=CD,
∴∠C=∠CAD=27°,
∵DE=EB,
∴∠B=∠EDB=x°
∴∠AED=∠DAE=2x°,
∴27×2+2x+x=180,
∴x=42,
∴∠B=42°;
②當AD=AE時,如圖1(b),
∵AD=CD,
∴∠C=∠CAD=27°,
∵DE=EB,
∴∠B=∠EDB=x°
∴∠AED=∠ADE=2x°,
∴2x+x=27+27,
∴x=18,
∴∠B=18°.
③當EA=DE時,
∵90﹣x+27+27+x=180,
∴x不存在,應舍去.
綜合上述:滿足條件的x=42°或18°.
科目:初中數學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市水費實行階梯式計量水價.每戶每月用水量不超過25噸,收
費標準為每噸a元;若每戶每月用水量超過25噸時,其中前25噸還是每噸a元,超出的部
分收費標準為每噸b元.下表是小明家一至四月份用水量和繳納水費情況.根據表格提供的數
據,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 16 | 18 | 30 | 35 |
水費(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32噸,則應繳水費 元;
(3)若小明家六月份應繳水費102.5元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點P是AC上的動點,連接BP,以BP為邊作等邊△BPQ,連接CQ,則點P在運動過程中,線段CQ長度的最小值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有4個球,其中2個紅球,2個白球,它們除顏色外其余都相同.
(1)摸出1個球是白球的概率是;
(2)同時摸兩個球恰好是兩個紅球的概率(要求畫樹狀圖或列表).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( )
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.
(1)求原計劃每天生產的零件個數和規(guī)定的天數.
(2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具零售店準備從批發(fā)市場選購A、B兩種文具,批發(fā)價A種為12元/件,B種為8元/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價x(元/件)均成一次函數關系.(如圖)
(1)求y與x的函數關系式;
(2)該店計劃這次選購A、B兩種文具的數量共100件,所花資金不超過1000元,并希望全部售完獲利不低于296元,若按A種文具每件可獲利4元和B種文具每件可獲利2元計算,則該店這次有哪幾種進貨方案?
(3)若A種文具的零售價比B種文具的零售價高2元/件,求兩種文具每天的銷售利潤W(元)與A種文具零售價x(元/件)之間的函數關系式,并說明A、B兩種文具零售價分別為多少時,每天銷售的利潤最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直角坐標平面內兩點A(-2,-3)、B(3,-3),將點B向上平移5個單位到達點C,求:
(1)A、B兩點間的距離;
(2)寫出點C的坐標;
(3)四邊形OABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com