【題目】(列二元一次方程組解應用題)某公司共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經過測試同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐.
(1)請問1個大餐廳、1個小餐廳分別可供多少名員工就餐;
(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全體450名員工就餐?請說明理由.
【答案】(1)1個大餐廳可供130名員工就餐,1個小餐廳可供40名員工就餐(2)滿足全體450名員工的就餐要求,理由見解析.
【解析】
(1)設1個大餐廳可供x名員工就餐,1個小餐廳可供y名員工就餐,根據“同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐”,即可得出關于x,y的二元一次方程組,解之即可得出結論;
(2)利用可供就餐的人數(shù)=每個餐廳可供就餐的人數(shù)×餐廳數(shù),求出3個大餐廳和2個小餐廳全部開放可供就餐人數(shù),將其與450比較后即可得出結論.
(1)設1個大餐廳可供x名員工就餐,1個小餐廳可供y名員工就餐,
依題意,得:,
解得:.
答:1個大餐廳可供130名員工就餐,1個小餐廳可供40名員工就餐.
(2)∵3×130+2×40=470(名),470>450,
∴如果3個大餐廳和2個小餐廳全部開放,那么能滿足全體450名員工的就餐要求.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點M,N,以點A為圓心,AB長為半徑畫弧BD.下列結論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結論的個數(shù)是( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2⊥B1C1于點D2 , 以AD2為一邊,做第二個菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點D3 , 以AD3為一邊做第三個菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個菱形ABnCnDn的邊ADn的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你補全證明過程:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:EF∥CD
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=90°,∠ACB=90°①( )
∴∠DGB=∠ACB ②( )
∴DG∥AC ③( )
∴∠2= ④________ ⑤( )
又∠1=∠2 ⑥( )
∴∠1=∠DCA ⑦( )
∴EF∥CD ⑧( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用長為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計).
(Ⅰ)求出 與 的函數(shù)關系式;
(Ⅱ)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正△ABC中,D,E分別在AC,AB上,且 ,AE=BE,則有( )
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解決下列問題:
材料一:對非負實數(shù)x“四舍五入”到個位的值記為,即:當n為非負整數(shù)時,如果,則;反之,當n為非負整數(shù)時,如果;則,例如:,,,
材料二:平面直角坐標系中任意兩點,,我們把叫做、兩點間的折線距離,并規(guī)定若是一定點,是直線上的一動點,我們把的最小值叫做到直線的折線距離,例如:若,則.
如果,寫出實數(shù)x的取值范圍;已知點,點,且,求a的值.
若m為滿足的最大值,求點到直線的折線距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長AD到E,使DE=AB.
(1)求證:∠ABC=∠EDC;
(2)求證:△ABC≌△EDC.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com