【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,A、B相距20海里,這時在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時的速度前往救援,問巡邏艇能否在1小時內(nèi)到達(dá)漁船C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
【答案】巡邏艇能在1小時內(nèi)到達(dá)漁船C處.
【解析】
由已知可得△ABC中∠C=67°,∠B=37°且AB=20海里.要求BC的長,可以過A作AD⊥BC于D,先求出CD和BD的長,就可轉(zhuǎn)化為運用三角函數(shù)解直角三角形.
過點A作AH⊥BC,垂足為點H.
由題意,得∠ACH=67°,∠B=37°,AB=20.
在Rt△ABH中,
∵sinB=,∴AH=ABsin∠B=20×sin37°≈12,
∵cosB=,∴BH=ABcos∠B=20×cos37°≈16,
在Rt△ACH中,
∵,
∴CH=,
∵BC=BH+CH,∴BC≈16+5=21.
∵21÷25<1,
所以,巡邏艇能在1小時內(nèi)到達(dá)漁船C處.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的六個角都是120°,邊長AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個六邊形的周長是:__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有一塊直角三角板,其中,,,A、B在x軸上,點A的坐標(biāo)為,圓M的半徑為,圓心M的坐標(biāo)為,圓M以每秒1個單位長度的速度沿x軸向右做平移運動,運動時間為t秒;
求點C的坐標(biāo);
當(dāng)點M在的內(nèi)部且與直線BC相切時,求t的值;
如圖2,點E、F分別是BC、AC的中點,連接EM、FM,在運動過程中,是否存在某一時刻,使?若存在,直接寫出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y= +(1-2a)x(a>0),下列說法錯誤的是( 。
A. 當(dāng)時,該二次函數(shù)圖象的對稱軸為y軸
B. 當(dāng)a>時,該二次函數(shù)圖象的對稱軸在y軸的右側(cè)
C. 該二次函數(shù)的圖象的對稱軸可為x=1
D. 當(dāng)x>2時,y的值隨x的值增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點D到地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊AD,AB的長分別為3,8,且B,C在x軸的負(fù)半軸上,E是DC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點E,與AB交于點F.
(1)若點B坐標(biāo)為(﹣6,0),求m的值;
(2)若AF﹣AE=2.且點E的橫坐標(biāo)為a.則點F的橫坐標(biāo)為 (用含a的代數(shù)式表示),點F的縱坐標(biāo)為 ,反比例函數(shù)的表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:記為,它與軸交于兩點,;將繞旋轉(zhuǎn)得到,交軸于;將繞旋轉(zhuǎn)得到,交軸于;…如此進行下去,直至得到,若點在第6段拋物線上,則______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com