A. | 40° | B. | 50° | C. | 65° | D. | 70° |
分析 連結(jié)BD,由于點(diǎn)D是AC弧的中點(diǎn),即弧CD=弧AD,根據(jù)圓周角定理得∠ABD=∠CBD,則∠ABD=25°,再根據(jù)直徑所對(duì)的圓周角為直角得到∠ADB=90°,然后利用三角形內(nèi)角和定理可計(jì)算出∠DAB的度數(shù).
解答 解:連結(jié)BD,如圖,
∵點(diǎn)D是$\widehat{AC}$的中點(diǎn),即弧CD=弧AD,
∴∠ABD=∠CBD,
∵∠ABC=50°,
∴∠ABD=$\frac{1}{2}$×50°=25°,
∵AB是半圓的直徑,
∴∠ADB=90°,
∴∠DAB=90°-25°=65°.
故選C.
點(diǎn)評(píng) 本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等;直徑所對(duì)的圓周角為直角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一、二象限 | B. | 三、四象限 | C. | 一、三象限 | D. | 二、四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com