【題目】如圖①,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,點(diǎn)D在BC上,且CD=3cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以1cm/s的速度沿AC向終點(diǎn)C運(yùn)動(dòng);點(diǎn)Q以1.25cm/s的速度沿BC向終點(diǎn)C運(yùn)動(dòng),兩點(diǎn)到達(dá)終點(diǎn)后停止運(yùn)動(dòng)。過(guò)點(diǎn)P作PE∥BC交AD于點(diǎn)E,連結(jié)EQ,設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為ts(t>0)。

(1) 連結(jié)DP,經(jīng)過(guò)1s后,四邊形EQDP能夠成為平行四邊形嗎? 請(qǐng)說(shuō)明理由;

(2) 當(dāng)t為何值時(shí),△EDQ為直角三角形?

(3) 如圖②,設(shè)點(diǎn)M是EQ的中點(diǎn),在點(diǎn)P、Q的整個(gè)運(yùn)動(dòng)過(guò)程中,試探究點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng)度是多少?

【答案】(1)能.四邊形EQDP是平行四邊形. (2)當(dāng)t為2.5或3.1時(shí),△EDQ為直角三角形(3)點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng)度是cm

【解析】試題分析:(1)如圖1當(dāng)t=1時(shí),AP=1,BQ=1.25,QD=0.75.由PEDC,得到EP=0.75,從而有EP=QD,再由EPQD,即可得到結(jié)論;

2)分EQP=90°,QED=90°兩種情況,通過(guò)三角形相似,列出比例關(guān)系,求出t的值即可;

3AB的中點(diǎn)M,DC的中點(diǎn)M連接MM′,則M運(yùn)動(dòng)的路徑就是線(xiàn)段MM過(guò)MMGBCG可以證明MG是△ABC的中位線(xiàn),得到MG=2BG=GC=2.5再由M′是DC的中點(diǎn),得到MC=1.5,進(jìn)而得到GM′=2.51.5=1,在Rt△MGM′中,由勾股定理即可得出MM′的長(zhǎng)

試題解析:解:(1)能理由如下

如圖1,當(dāng)t=1時(shí),AP=1BQ=1.25,QD=2-1.25=0.75PEDC, ,,EP=0.75,EP=QDEPQD,∴四邊形EQDP是平行四邊形

2)分兩種情況討論:

如圖3,當(dāng)EQD=90°時(shí),顯然有EQ=PC=4﹣tEQAC∴△EDQ∽△ADC,

.BC=5厘米,CD=3厘米,BD=2厘米,DQ=1.25t2, ,解得t=2.5(秒);

如圖4,當(dāng)QED=90°時(shí),作EMBCM,CNADN,則四邊形EMCP是矩形,EM=PC=4tRtACD中,AC=4厘米,CD=3厘米,AD==5,CN==.∵∠CDA=EDQQED=C=90°,∴△EDQ∽△CDA,,解得t=3.1(秒).

綜上所述當(dāng)t=2.5秒或t=3.1秒時(shí),EDQ為直角三角形.

3)作AB的中點(diǎn)M,DC的中點(diǎn)M,連接MM′,則M運(yùn)動(dòng)的路徑就是線(xiàn)段MM過(guò)MMGBCGMAB的中點(diǎn),∴GBC的中點(diǎn),∴MG是△ABC的中位線(xiàn),∴MG=AC=2,BG=GC=2.5M′是DC的中點(diǎn),∴MC=DC=1.5,GM′=2.51.5=1,MM′===cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以∠AOB的頂點(diǎn)O為端點(diǎn)引射線(xiàn)OP,使∠AOP:∠BOP=32,若∠AOB=20°,則∠AOP的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(2,2)是雙曲線(xiàn)上一點(diǎn),點(diǎn)B是雙曲線(xiàn)上位于點(diǎn)A右下方的另一點(diǎn),C是x軸上的點(diǎn),且△ABC是以∠B為直角的等腰直角三角形,則點(diǎn)B的坐標(biāo)是__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1

2

3

4

5

6

7

8

9

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB的三個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為一個(gè)長(zhǎng)度單位,以點(diǎn)O建立平面直角坐標(biāo)系,AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90,得到A1OB1(AA1是對(duì)應(yīng)點(diǎn))

(1)寫(xiě)出點(diǎn)A1B1的坐標(biāo) ;

(2)求旋轉(zhuǎn)過(guò)程中邊OB掃過(guò)的面積(結(jié)果保留π);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名足球守門(mén)員練習(xí)折返跑,從球門(mén)線(xiàn)出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門(mén)員最后是否回到了球門(mén)線(xiàn)的位置?

(2)在練習(xí)過(guò)程中,守門(mén)員離開(kāi)球門(mén)最遠(yuǎn)距離是多少米?

(3)守門(mén)員全部練習(xí)結(jié)束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪(fǎng)問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題,求的立方根.華羅庚脫口而出,你知道怎樣迅速準(zhǔn)確地計(jì)算出結(jié)果的嗎?請(qǐng)按照下面的問(wèn)題試一試:

1)由,確定的立方根是 位數(shù);

2)由的個(gè)位數(shù)是確定的立方根的個(gè)位數(shù)是 ;

3)如果劃去后面的三位得到數(shù),,由此能確定的立方根的十位數(shù)是 ;所以的立方根是

4)用類(lèi)似的方法,請(qǐng)說(shuō)出的立方根是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=kx-6經(jīng)過(guò)點(diǎn)A(4,0),直線(xiàn)y=-3x+3與x軸交于點(diǎn)B,且兩直線(xiàn)交于點(diǎn)C.

(1)求k的值;

(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案