【題目】如圖,在四邊形中,,,于點(diǎn),,,則( )
A.B.C.2D.3
【答案】A
【解析】
如圖,連接AC,作CF⊥AB于F,CE⊥AD交AD的延長(zhǎng)線于E.證明△CED≌△CFB(AAS),Rt△ACE≌Rt△ACF(HL),利用全等三角形的性質(zhì)解決問(wèn)題即可.
如圖,連接AC,作CE⊥AD交AD的延長(zhǎng)線于E.
∵∠B=60,∠ADC=120,
∴∠DAB+∠DCB=180,
∵∠E+∠CFA=180,
∴∠EAF+∠ECF=180,
∴∠ECF=∠DCB,
∴∠DCE=∠BCF,
∵∠E=∠CFB=90,CD=CB,
∴△CED≌△CFB(AAS),
∴CE=CF,DE=BF,
∵AC=AC,CE=CF,
∴Rt△ACE≌Rt△ACF(HL),
∴AE=AF,
∴AE-AD=DE=BF=,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題探究】
()如圖①,點(diǎn)是正高上的一定點(diǎn),請(qǐng)?jiān)?/span>上找一點(diǎn),使,并說(shuō)明理由.
()如圖②,點(diǎn)是邊長(zhǎng)為的正高上的一動(dòng)點(diǎn),求的最小值.
【問(wèn)題解決】
()如圖③,、兩地相距, 是筆直第沿東西方向向兩邊延伸的一條鐵路.今計(jì)劃在鐵路線上修一個(gè)中轉(zhuǎn)站,再在間修一條筆直的公路.如果同樣的物資在每千米公路上的運(yùn)費(fèi)是鐵路上的兩倍.那么,為使通過(guò)鐵路由到再通過(guò)公路由到的總運(yùn)費(fèi)達(dá)到最小值,請(qǐng)確定中轉(zhuǎn)站\的位置,并求出的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)四邊形的兩條對(duì)角線相等且相互垂直,則稱這個(gè)四邊形為“等垂四邊形”.
如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據(jù)等垂四邊形對(duì)角線互相垂直的特征可得等垂四邊形的一個(gè)重要性質(zhì):等垂四邊形的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息解答下列問(wèn)題:
(1)矩形 “等垂四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請(qǐng)猜想OM與BC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
⑴先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為_(kāi)______,若A為隨機(jī)事件,則m的取值為_(kāi)_____;
⑵若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用列表法與樹(shù)狀圖法求這個(gè)事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說(shuō):“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說(shuō)法是否正確并說(shuō)明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過(guò) P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,3),過(guò)動(dòng)點(diǎn)M(n,0)作x軸的垂線與直線l1和l2分別交于P、Q兩點(diǎn).
(1)求m的值及l2的函數(shù)表達(dá)式;
(2)當(dāng)PQ≤4時(shí),求n的取值范圍;
(3)是否存在點(diǎn)P,使S△OPC=2S△OBC?若存在,求出此時(shí)點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com