【題目】如圖,已知∠1=∠2=90°,AD=AE,那么圖中有_____對全等三角形.
【答案】3
【解析】根據(jù)題意,結(jié)合圖形,可得知△AEB≌△ADC,△BED≌△CDE,△BOD≌△COE.做題時要從已知條件開始結(jié)合圖形利用全等的判定方法由易到難逐個尋找.
解:①△AEB≌△ADC;∵AE=AD,∠1=∠2=90°,∠A=∠A,∴△AEC≌△ADC;∴AB=AC,∴BD=CE;
②△BED≌△CDE;∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠CDE=∠BED,
∴△BED≌△CDE.
③∵BD=CE,∠DBO=∠ECO,∠BOD=∠COE,∴△BOD≌△COE.
故答案為3.
“點睛”本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等,本題是一道較為簡單的題目.
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)了臺數(shù)相同A型、B型兩種單價不同的計算機,B型機的單價比A型機的便宜0.24萬元,已知A型機總價值120萬元,B型計算機總價值為80萬元,求A型、B型兩種計算機的單價,設(shè)A型計算機的單價是x萬元,可列方程_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某月的日歷表,在此日歷表上可以用一個“十”字圈出5個數(shù)(如3,9,10,11,17).照此方法,若圈出的5個數(shù)中,最大數(shù)與最小數(shù)的和為46,則這5個數(shù)的和為( )
A. 205 B. 115 C. 85 D. 65
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把正整數(shù)1,2,3,4,…,2 009排列成如圖所示的一個表.
(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是__ __,__ __,__ __;
(2)在(1)前提下,當被框住的4個數(shù)之和等于416時,x的值是多少?
(3)在(1)前提下,被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)()×(﹣36); (2)[2﹣5×(﹣)2]÷(﹣);
(3)1×﹣(﹣ )×2+(﹣ )÷1 ; (4)﹣14﹣[1﹣(1﹣0.5× )×6]
(5); (6)-22+(1-×0.2)÷(-2)3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,我市教育局在全市中小學積極推廣“太極拳”運動.弘孝中學為爭創(chuàng)“太極拳”示范學校,今年3月份舉行了“太極拳”比賽,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學生參加了學校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:
(1)該校七(1)班共有△名學生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于△度;并補全條形統(tǒng)計圖;
(2)A等級的4名學生中有2名男生,2名女生,現(xiàn)從中任意選取2名學生作為全班訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上的位置如圖所示:
(1)比較 a、|b|、c 的大。ㄓ“<”連接);
(2)若 m=|a+b|﹣|b﹣1|﹣|a﹣c|,求 1﹣2013(m+c)2013 的值;
(3)若 a=﹣2,b=﹣3,c=,且 a、b、c 對應(yīng)的點分別為 A、B、C,問在數(shù)軸上是否存在一點 P,使 P 與 A 的距離是 P 與 C 的距離的 3 倍?若存在,請求出 P 點對應(yīng)的有理數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com