如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-1,0)、(0,-3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

解:(1)∵拋物線y=x2+bx+c經(jīng)過A(-1,0)、B(0,-3),
,
解得,
故拋物線的函數(shù)解析式為y=x2-2x-3;

(2)令x2-2x-3=0,
解得x1=-1,x2=3,
則點(diǎn)C的坐標(biāo)為(3,0),
∵y=x2-2x-3=(x-1)2-4,
∴點(diǎn)E坐標(biāo)為(1,-4),
設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,
解得m=-1,
∴點(diǎn)D的坐標(biāo)為(0,-1);

(3)∵點(diǎn)C(3,0),D(0,-1),E(1,-4),
∴CO=DF=3,DO=EF=1,
根據(jù)勾股定理,CD===,
在△COD和△DFE中,
,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°-90°=90°,
∴CD⊥DE,
①分OC與CD是對(duì)應(yīng)邊時(shí),
∵△DOC∽△PDC,
=,
=,
解得DP=
過點(diǎn)P作PG⊥y軸于點(diǎn)G,
==
==,
解得DG=1,PG=,
當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG-DO=1-1=0,
所以點(diǎn)P(-,0),
當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=DO+DG=1+1=2,
所以,點(diǎn)P(,-2);
②OC與DP是對(duì)應(yīng)邊時(shí),
∵△DOC∽△CDP,
=,
=,
解得DP=3
過點(diǎn)P作PG⊥y軸于點(diǎn)G,
==,
==,
解得DG=9,PG=3,
當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG-OD=9-1=8,
所以,點(diǎn)P的坐標(biāo)是(-3,8),
當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=OD+DG=1+9=10,
所以,點(diǎn)P的坐標(biāo)是(3,-10),
綜上所述,滿足條件的點(diǎn)P共有4個(gè),其坐標(biāo)分別為(-,0)、(,-2)、(-3,8)、(3,-10).
分析:(1)把點(diǎn)A、B的坐標(biāo)代入拋物線解析式,解方程組求出b、c的值,即可得解;
(2)令y=0,利用拋物線解析式求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,利用勾股定理列式表示出DC2與DE2,然后解方程求出m的值,即可得到點(diǎn)D的坐標(biāo);
(3)根據(jù)點(diǎn)C、D、E的坐標(biāo)判定△COD和△DFE全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的長度,然后①分OC與CD是對(duì)應(yīng)邊;②OC與DP是對(duì)應(yīng)邊;根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出DP的長度,過點(diǎn)P作PG⊥y軸于點(diǎn)G,再分點(diǎn)P在點(diǎn)D的左邊與右邊兩種情況,分別求出DG、PG的長度,結(jié)合平面直角坐標(biāo)系即可寫出點(diǎn)P的坐標(biāo).
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合題型,主要涉及待定系數(shù)法求二次函數(shù)解析式,勾股定理的應(yīng)用,相似三角形對(duì)應(yīng)邊成比例的性質(zhì),(3)題稍微復(fù)雜,一定要注意分相似三角形的對(duì)應(yīng)邊的不同,點(diǎn)P在點(diǎn)D的左右兩邊的情況討論求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,拋物線y=ax2+bx+c與兩坐標(biāo)軸的交點(diǎn)分別是A、B、E,且△ABE是等腰直角三角形,AE=BE,則下列關(guān)系式中不能成立的是( 。
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河源二模)已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線交y軸于點(diǎn)C,問該拋物線對(duì)稱軸上是否存在點(diǎn)M,使得△MAC的周長最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•槐蔭區(qū)一模)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-1,0)、(0,-3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)如圖所示,拋物線對(duì)應(yīng)的函數(shù)解析表達(dá)式只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•陜西)如圖所示的拋物線是把y=-x2經(jīng)過平移而得到的.這時(shí)拋物線過原點(diǎn)O和x軸正向上一點(diǎn)A,頂點(diǎn)為P;
①當(dāng)∠OPA=90°時(shí),求拋物線的頂點(diǎn)P的坐標(biāo)及解析表達(dá)式;
②求如圖所示的拋物線對(duì)應(yīng)的二次函數(shù)在-
1
2
≤x≤
1
2
時(shí)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案