【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,E是AB邊的中點(diǎn),F(xiàn)是AC邊的中點(diǎn)。則EF=。
【答案】2
【解析】根據(jù)對稱點(diǎn)的性質(zhì),延長FC到P , 使FC=PC , 連接EP交BC于D , 連接ED、FD , 此時ED+FD最小,即△EDF的周長最小,求出EP長,即可求出答案.
解答:∵E是AB邊的中點(diǎn),F(xiàn)是AC邊的中點(diǎn),
∴EF為△ABC的中位線,
∵BC=4,
∴EF= BC= ×4=2;
分析:根據(jù)對稱點(diǎn)的性質(zhì),延長FC到P,使FC=PC,連接EP交BC于D,連接ED、FD,此時ED+FD最小,即△EDF的周長最小,求出EP長,即可求出答案.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和三角形中位線定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,
將菱形OABC繞原點(diǎn)順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )
A. (, ) B. (, ) C. (-, ) D. (, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能判定四邊形是平行四邊形的條件是( )
A.一組對邊平行,另一組對邊相等
B.一組對邊相等,一組鄰角相等
C.一組對邊平行,一組鄰角相等
D.一組對邊平行,一組對角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長度的三根小木棒能構(gòu)成三角形的是( )
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在研究數(shù)學(xué)問題時發(fā)現(xiàn)一個有趣的現(xiàn)象:
(1)請你用不同的三位數(shù)(個位數(shù)字不能為0)再試試,寫出你發(fā)現(xiàn)了什么有趣的現(xiàn)象.
(2)用你所學(xué)過的知識解釋其中的道理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:直線l與直線l外一點(diǎn)A。求作:過點(diǎn)A作直線l的平行線。
小明的作法如下:
如圖,
①在直線l上任取兩點(diǎn)B,C;
②以點(diǎn)A為圓心,線段BC的長為半徑作圓。灰渣c(diǎn)C為圓心,線段AB的長為半徑作圓弧;兩圓。ㄅc點(diǎn)A在l同側(cè))的交點(diǎn)為D;
③過點(diǎn)A,D作直線。所以直線AD即為所求。
老師說:“小明的作法正確!
該作圖的依據(jù)是_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水由氫原子和氧原子組成,其中氫原子的直徑約為0.0000000001米,用科學(xué)記數(shù)法表示為____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx﹣1(常數(shù)k<0)的圖象一定不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到x軸的距離等于2的點(diǎn)組成的圖形是
A. 過點(diǎn)0,2且與x軸平行的直線
B. 過點(diǎn)2,0且與y軸平行的直線
C. 過點(diǎn)0,2且與x軸平行的直線
D. 分別過0,2和0,2且與x軸平行的兩條直線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com