【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
【答案】
(1)
證明:∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四邊形ABCD為平行四邊形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS).
(2)
證明:∵四邊形ABCD為平行四邊形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
則四邊形BFDE為矩形.
【解析】(1)由DE與AB垂直,BF與CD垂直,得到一對(duì)直角相等,再由ABCD為平行四邊形得到AD=BC,對(duì)角相等,利用AAS即可的值;
(2)由平行四邊形的對(duì)邊平行得到DC與AB平行,得到∠CDE為直角,利用三個(gè)角為直角的四邊形為矩形即可的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購(gòu)買(mǎi)不超過(guò)10件時(shí),售價(jià)不變;若一次性購(gòu)買(mǎi)超過(guò)10件時(shí),每多買(mǎi)1件,所買(mǎi)的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購(gòu)買(mǎi)服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍。
(2)顧客一次性購(gòu)買(mǎi)多少件時(shí),該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P在這條拋物線上,且不與B、C兩點(diǎn)重合.過(guò)點(diǎn)P作y軸的垂線與射線BC交于點(diǎn)Q,以PQ為邊作Rt△PQF,使∠PQF=90°,點(diǎn)F在點(diǎn)Q的下方,且QF=1.設(shè)線段PQ的長(zhǎng)度為d,點(diǎn)P的橫坐標(biāo)為m.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)求d與m之間的函數(shù)關(guān)系式.
(3)當(dāng)Rt△PQF的邊PF被y軸平分時(shí),求d的值.
(4)以O(shè)B為邊作等腰直角三角形OBD,當(dāng)0<m<3時(shí),直接寫(xiě)出點(diǎn)F落在△OBD的邊上時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為1的正方形網(wǎng)格紙上有一個(gè)△ABC,頂點(diǎn)A、B、C及點(diǎn)O均在格點(diǎn)上,請(qǐng)按要求完成以下操作或運(yùn)算:
(1)將△ABC向上平移4個(gè)單位,得到△A1B1C1(不寫(xiě)作法,但要標(biāo)出字母)
(2)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°,得到△A2B2C2(不寫(xiě)作法,但要標(biāo)出字母)
(3)求點(diǎn)A繞著點(diǎn)O旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年益陽(yáng)市的地區(qū)生產(chǎn)總值(第一、二、三產(chǎn)業(yè)的增加值之和)已進(jìn)入千億元俱樂(lè)部,如圖表示2014年益陽(yáng)市第一、二、三產(chǎn)業(yè)增加值的部分情況,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題
(1)2014年益陽(yáng)市的地區(qū)生產(chǎn)總值為多少億元?
(2)請(qǐng)將條形統(tǒng)計(jì)圖中第二產(chǎn)業(yè)部分補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中第二產(chǎn)業(yè)對(duì)應(yīng)的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)O出發(fā),向點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)問(wèn):當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過(guò)點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過(guò)點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
(4)設(shè)拋物線頂點(diǎn)為M,連接BP,BM,MQ,問(wèn):是否存在t的值,使以B,Q,M為頂點(diǎn)的三角形與以O(shè),B,P為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過(guò)點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過(guò)點(diǎn)M作MN∥OA,交BO于點(diǎn)N,連接ND、BM,設(shè)OP=t.
(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說(shuō)明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“救死扶傷”是我國(guó)的傳統(tǒng)美德,某媒體就“老人摔倒該不該扶”進(jìn)行了調(diào)查,將得到的數(shù)據(jù)經(jīng)統(tǒng)計(jì)分析后繪制成如圖所示的扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖判斷下列說(shuō)法,其中錯(cuò)誤的一項(xiàng)是( )
A.認(rèn)為依情況而定的占27%
B.認(rèn)為該扶的在統(tǒng)計(jì)圖中所對(duì)應(yīng)的圓心角是234°
C.認(rèn)為不該扶的占8%
D.認(rèn)為該扶的占92%
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com