分析 (1)首先根據(jù)角平分線的性質(zhì)得到∠DAC=∠BAC,∠ABD=∠DBC,然后根據(jù)平行線的性質(zhì)得到∠DAB+∠CBA=180°,從而得到∠BAC+∠ABD=$\frac{1}{2}$(∠DAB+∠ABC)=$\frac{1}{2}$×180°=90°,得到答案∠AOD=90°;
(2)根據(jù)平行線的性質(zhì)得出∠ADB=∠DBC,∠DAC=∠BCA,根據(jù)角平分線定義得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根據(jù)等腰三角形的判定得出AB=BC=AD,根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,即可得出答案.
解答 解:(1)∵AC、BD分別是∠BAD、∠ABC的平分線,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∵AE∥BF,
∴∠DAB+∠CBA,=180°,
∴∠BAC+∠ABD=$\frac{1}{2}$(∠DAB+∠ABC)=$\frac{1}{2}$×180°=90°,
∴∠AOD=90°;
(2)證明:∵AE∥BF,
∴∠ADB=∠DBC,∠DAC=∠BCA,
∵AC、BD分別是∠BAD、∠ABC的平分線,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∴∠BAC=∠ACB,∠ABD=∠ADB,
∴AB=BC,AB=AD
∴AD=BC,
∵AD∥BC,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴四邊形ABCD是菱形.
點評 本題考查了等腰三角形的性質(zhì),平行四邊形的判定,菱形的判定的應(yīng)用,能得出四邊形ABCD是平行四邊形是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4,3 | B. | 4,5 | C. | 3,4 | D. | 5,4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 購買一張彩票,中獎 | |
B. | 通常加熱到100℃時,水沸騰 | |
C. | 任意畫一個三角形,其內(nèi)角和是360° | |
D. | 射擊運動員射擊一次,命中靶心 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②④ | D. | ② |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com