【題目】如圖,一條拋物線與x軸相交于A,B兩點(diǎn),其頂點(diǎn)P在折線C-D-E上移動(dòng),若點(diǎn)C,D,E的坐標(biāo)分別為(-1,4),(3,4),(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為________.
【答案】2
【解析】
拋物線在平移過(guò)程中形狀沒(méi)有發(fā)生變化,因此函數(shù)解析式的二次項(xiàng)系數(shù)在平移前后不會(huì)改變.首先,當(dāng)點(diǎn)B橫坐標(biāo)取最小值時(shí),函數(shù)的頂點(diǎn)在C點(diǎn),根據(jù)待定系數(shù)法可確定拋物線的解析式;而點(diǎn)A橫坐標(biāo)取最大值時(shí),拋物線的頂點(diǎn)應(yīng)移動(dòng)到E點(diǎn),結(jié)合前面求出的二次項(xiàng)系數(shù)以及E點(diǎn)坐標(biāo)可確定此時(shí)拋物線的解析式,進(jìn)一步能求出此時(shí)點(diǎn)A的坐標(biāo),即點(diǎn)A的橫坐標(biāo)最大值.
解:由圖知:當(dāng)點(diǎn)B的橫坐標(biāo)為1時(shí),拋物線頂點(diǎn)取C(-1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點(diǎn)B坐標(biāo),得:
a(x+1)2+4=0,
解得:a=-1,
即:B點(diǎn)橫坐標(biāo)取最小值時(shí),拋物線的解析式為:y=-(x+1)2+4.
當(dāng)A點(diǎn)橫坐標(biāo)取最大值時(shí),拋物線頂點(diǎn)應(yīng)取E(3,1),則此時(shí)拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),
即與x軸的交點(diǎn)為(2,0)或(4,0)(舍去),
故點(diǎn)A的橫坐標(biāo)的最大值為2.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是8×8的標(biāo)準(zhǔn)點(diǎn)陣圖,直線l、m互相垂直,已知△ABC.
(1)寫出△ABC的形狀;
(2)分別畫出△ABC關(guān)于直線l、m對(duì)稱的△A1B1C1,△A2B2C2,再畫出△A1B1C1關(guān)于直線m對(duì)稱的△A3B3C3
(3)△A2B2C2與△A3B3C3關(guān)于哪條直線對(duì)稱? (填“直線l、m”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:根據(jù)《中國(guó)鐵路中長(zhǎng)期發(fā)展規(guī)劃》,預(yù)計(jì)到2020年底,我國(guó)建設(shè)城際軌道交通的公里數(shù)是客運(yùn)專線的2倍。其中建設(shè)城際軌道交通約投入8000億元,客運(yùn)專線約投入3500億元。據(jù)了解,建設(shè)每公里城際軌道交通與客運(yùn)專線共需1.5億元。預(yù)計(jì)到2020年底,我國(guó)將建設(shè)城際軌道交通和客運(yùn)專線分別約多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在射線AB的上方,且∠PAB=45°,PA=2,點(diǎn)M是射線AB上的動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A重合),現(xiàn)將點(diǎn)P繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°到點(diǎn)Q,將點(diǎn)M繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn)60°到點(diǎn)N,連接AQ,PM,PN,作直線QN.
(1)求證:AM=QN.
(2)直線QN與以點(diǎn)P為圓心,以PN的長(zhǎng)為半徑的圓是否存在相切的情況?若存在,請(qǐng)求出此時(shí)AM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)以點(diǎn)P為圓心,以PN的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)Q時(shí),直接寫出劣弧NQ與兩條半徑所圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加“仙桃市中小學(xué)生首屆詩(shī)詞大會(huì)”,某校八年級(jí)的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(jī)(百分制)分別為:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通過(guò)數(shù)據(jù)分析,列表如下:
(1)直接寫出表中a,b,c,d的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績(jī)較好?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(6,0),B(8,5),將線段OA平移至CB,點(diǎn)D(x,0)在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.
(1)求對(duì)角線AC的長(zhǎng);
(2)△ODC與△ABD的面積分別記為S1,S2,設(shè)S=S1﹣S2,求S關(guān)于x的函數(shù)解析式,并探究是否存在點(diǎn)D使S與△DBC的面積相等,如果存在,請(qǐng)求出x的值(或取值范圍);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用圖象解一元二次方程x2-2x-1=0時(shí),我們采用的一種方法是在直角坐標(biāo)系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點(diǎn)的橫坐標(biāo)就是該方程的解.
(1)請(qǐng)?jiān)俳o出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結(jié)果保留兩位有效數(shù)字).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(為正整數(shù))都在數(shù)軸上,點(diǎn)在原點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;點(diǎn)在點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;…,依照上述規(guī)律,點(diǎn)所表示的數(shù)分別為 ( )
A.2018,-2019B.1009,-1010C.-2018,2019D.-1009,1009
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com