【題目】如圖,拋物線與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過(guò)點(diǎn).點(diǎn)P、Q是拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線OD下方時(shí),求面積的最大值.
(3)直線OQ與線段BC相交于點(diǎn)E,當(dāng)與相似時(shí),求點(diǎn)Q的坐標(biāo).
【答案】(1)拋物線的表達(dá)式為:;(2)有最大值,當(dāng)時(shí),其最大值為;(3) 或或或.
【解析】
(1)函數(shù)的表達(dá)式為:y=a(x+1)(x-3),將點(diǎn)D坐標(biāo)代入上式,即可求解;
(2)設(shè)點(diǎn),求出,根據(jù),利用二次函數(shù)的性質(zhì)即可求解;
(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,兩種情況分別求解,通過(guò)角的關(guān)系,確定直線OQ傾斜角,進(jìn)而求解.
解:(1)函數(shù)的表達(dá)式為:,將點(diǎn)D坐標(biāo)代入上式并解得:,
故拋物線的表達(dá)式為:…①;
(2)設(shè)直線PD與y軸交于點(diǎn)G,設(shè)點(diǎn),
將點(diǎn)P、D的坐標(biāo)代入一次函數(shù)表達(dá)式:并解得,直線PD的表達(dá)式為:,則,
,
∵,故有最大值,當(dāng)時(shí),其最大值為;
(3)∵,∴,
∵,故與相似時(shí),分為兩種情況:
①當(dāng)時(shí),,,,
過(guò)點(diǎn)A作AH⊥BC與點(diǎn)H,
,解得:,
∴CH=
則,
則直線OQ的表達(dá)式為:…②,
聯(lián)立①②并解得:,
故點(diǎn)或;
②時(shí),
,
則直線OQ的表達(dá)式為:…③,
聯(lián)立①③并解得:,
故點(diǎn)或;
綜上,點(diǎn)或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年5月13日,大國(guó)重器﹣﹣中國(guó)第一艘國(guó)產(chǎn)航母正式海試,某校團(tuán)支部為了了解同學(xué)們對(duì)此事的知曉情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,并根據(jù)收集到的信息繪制了如下兩幅不完整的統(tǒng)計(jì)圖,圖中A表示“知道得很詳細(xì)”,B表示“知道個(gè)大概”,C表示“聽(tīng)說(shuō)了”,D表示“完全不知道”,請(qǐng)根據(jù)途中提供的信息完成下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中A對(duì)應(yīng)的圓心角是 度,并補(bǔ)全折線統(tǒng)計(jì)圖.
(2)被抽取的同學(xué)中有4位同學(xué)都是班級(jí)的信息員,其中有一位信息員屬于D類(lèi),校團(tuán)支部從這4位信息員中隨機(jī)選出兩位作為校廣播站某訪談節(jié)目的嘉賓,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出屬于D類(lèi)的信息員被選為的嘉賓的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)矩形的對(duì)稱(chēng)中點(diǎn)E,且與邊BC交于點(diǎn)D,若過(guò)點(diǎn)D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,則此直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點(diǎn)女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無(wú)人機(jī)在五峰山隧道正上空點(diǎn)P處測(cè)得黃石大橋西端點(diǎn)A的俯角為30°,東端點(diǎn)B(隧道西進(jìn)口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長(zhǎng)175米,隧道BC的長(zhǎng)約多少米(計(jì)算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解今年灌陽(yáng)縣3000名七年級(jí)學(xué)生“地理知識(shí)大賽”的筆試情況,隨機(jī)抽取了部分參賽同學(xué)的成績(jī),整理并制作如圖所示的圖表(部分未完成).請(qǐng)你根據(jù)表中提供的信息,解答下列問(wèn)題:
(1)此次調(diào)查的樣本容量為______;m=______;n=______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果比賽成績(jī)80分以上為優(yōu)秀,那么你估計(jì)灌陽(yáng)縣七年級(jí)學(xué)生筆試成績(jī)的優(yōu)秀人數(shù)大約是______名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,是邊上的一個(gè)動(dòng)點(diǎn),點(diǎn),,分別是,,的中點(diǎn).
(1)求證:;
(2)當(dāng)是的中點(diǎn)時(shí),四邊形是什么樣的特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)試說(shuō)明△COD是等邊三角形;
(2)當(dāng)a=150°時(shí),OB=3,OC=4,試求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),直線交拋物線于點(diǎn),并且,,.
(1)求拋物線的解析式;
(2)已知點(diǎn)為拋物線上一動(dòng)點(diǎn),且在第二象限,順次連接點(diǎn)、、、,求四邊形面積的最大值;
(3)在(2)中四邊形面積最大的條件下,過(guò)點(diǎn)作直線平行于軸,在這條直線上是否存在一個(gè)以點(diǎn)為圓心,為半徑且與直線相切的圓?若存在,求出圓心的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com