【題目】如圖,AB⊥BC,DC⊥BC,EBC上一點,使得AE⊥DE;

(1)求證:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的長;

(3)當(dāng)△AED∽△ECD時,請寫出線段AD、AB、CD之間數(shù)量關(guān)系,并說明理由.

【答案】(1)證明見解析;(2);(3)線段AD、AB、CD之間數(shù)量關(guān)系:AD=AB+CD;理由見解析.

【解析】

(1)先根據(jù)同角的余角相等可得:∠DEC=∠A,利用兩角相等證明三角形相似;
(2)先根據(jù)勾股定理得:BE=3,根據(jù)△ABE∽△ECD,列比例式可得結(jié)論;
(3)先根據(jù)△AED∽△ECD,證明∠EAD=∠DEC,可得∠ADE=∠EDC,證明Rt△DFE≌Rt△DCE(HL),則DF=DC,同理可得:AF=AB,相加可得結(jié)論.

(1)證明:∵ABBC,DCBC,

∴∠B=C=90°,BAE+AEB=90°,

AEDE,

∴∠AED=90°,

∴∠AEB+DEC=90°,

∴∠DEC=BAE,

∴△ABE∽△ECD;

(2)解:RtABE中,∵AB=4,AE=5,

BE=3,

BC=5,

EC=5﹣3=2,

由(1)得:ABE∽△ECD,

,

,

CD=

(3)解:線段AD、AB、CD之間數(shù)量關(guān)系:AD=AB+CD;

理由是:過EEFADF,

∵△AED∽△ECD,

∴∠EAD=DEC,

∵∠AED=C,

∴∠ADE=EDC,

DCBC,

EF=EC,

DE=DE,

RtDFERtDCE(HL),

DF=DC,

同理可得:ABE≌△AFD,

AF=AB,

AD=AF+DF=AB+CD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)+”時代的到來,傳統(tǒng)的教學(xué)模式也在悄然發(fā)生著改變.某出國培訓(xùn)機構(gòu)緊跟潮流,對培訓(xùn)課程采取了線上線下同步銷售的策路,為了讓客戶更理性的選擇,該機構(gòu)推出了甲、乙兩個課程體驗包:甲課程體驗包價值660元含3節(jié)線上課程和2節(jié)線下課;乙課程體驗包價值990元含2節(jié)線上課程和5節(jié)線下課程.

(1)分別求出該機構(gòu)每節(jié)課的線上價格和線下價格;

(2)該機構(gòu)其中一個銷售團隊上個月的銷售業(yè)績?yōu)椋壕上課程成交900節(jié),線下課成交1000節(jié).為回饋客戶,本月該機構(gòu)針對線上、線下每節(jié)課程的價格均作出了調(diào)整:每節(jié)課線上價格比上個月的價格下調(diào)a%,線下價格比上個月的價格下調(diào)a%,到本月底統(tǒng)計發(fā)現(xiàn),該銷售團隊線上成交的課程數(shù)比上個月增加了a%,線下成交的課程數(shù)上升到1080節(jié),最終團隊的月銷售總額線上比線下少了54000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知△ABC的三個頂點在格點上.

1)畫出△ABC關(guān)于直線l對稱的△A1B1C1;

2)在直線l上找一點P,使PA+PB的長最短;(不寫作法,保留作圖痕跡)

3)△ABC   直角三角形(填不是),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作發(fā)現(xiàn):如圖1,D是等邊△ABCBA上的一動點(D與點B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,易證AF=BD(不需要證明);

類比猜想:①如圖2,當(dāng)動點D運動至等邊△ABCBA的延長線上時,其它作法與圖1相同,猜想AFBD在圖1中的結(jié)論是否仍然成立。

深入探究:②如圖3,當(dāng)動點D在等邊△ABCBA上的一動點(D與點B不重合),連接DC,以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′你能發(fā)現(xiàn)AFBF′AB有何數(shù)量關(guān)系,并證明你發(fā)現(xiàn)的結(jié)論。

③如圖4,當(dāng)動點D運動至等邊△ABCBA的延長線上時,其它作法與圖3相同,猜想AF,BF′AB在上題②中的結(jié)論是否仍然成立,若不成立,請給出你的結(jié)論并證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在八年級(1)班學(xué)生中開展對于我國國家公祭日知曉情況的問卷調(diào)調(diào)查. 問卷調(diào)查的結(jié)果分為A、BC、D四類,其中A類表示非常了解;B類表示比較了解C類表示基本了解;D類表示不太了解;班長將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計圖.

請根據(jù)上述信息解答下列問題:

1)該班參與問卷調(diào)查的人數(shù)有  人;

2)補全條形統(tǒng)計圖;

3)求C類人數(shù)占總調(diào)查人數(shù)的百分比;

4)求扇形統(tǒng)計圖中A類所對應(yīng)扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點A、C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=

(1)求點B的坐標(biāo);

(2)x軸上找一點D,連接BD使得△ABD△ABC相似(不包括全等),并求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC,AB=AC,BAC=120,

1)利用直尺、圓規(guī),求作AB的垂直平分線DE,BC于點D、交AB于點E:(不要求寫出作法,但要求保留作圖痕跡)

2)若BD=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當(dāng)點K到達點F時停止運動,點P也隨之停止.設(shè)點P、K運動的時間是t秒(t>0).

(1)當(dāng)t=1時,KE=_____,EN=_____;

(2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?

(3)當(dāng)點K到達點N時,求出t的值;

(4)當(dāng)t為何值時,△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC

1)若AB=4,AC=5,則BC邊的取值范圍是  ;

2)點DBC延長線上一點,過點DDE∥AC,交BA的延長線于點E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案